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State-of-the-art software packages for solving large-scale linear systems are predominantly
founded on Gaussian elimination techniques (e.g. LU-decomposition). This paper presents
an efficient framework for solving large-scale linear systems by means of a novel utilization
of Cramer’s rule. While the latter is often perceived to be impractical when considered
for large systems, it is shown that the algorithm proposed retains an O(N3) complexity
with pragmatic forward and backward stability properties. Empirical results are provided
to substantiate the stated accuracy and computational complexity claims.
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1. Introduction

Systems of linear equations are central to many science and engineering application domains. Fast linear solvers generally
use a form of Gaussian elimination [8], the most common of which is LU-decomposition. The latter involves a computation
complexity of WLU ≈ 2

3 N3 [11], where N denotes the number of linearly independent columns in a matrix. The factor

2 accounts for one addition and one multiplication. If only multiplications are considered, then WLU ≈ N3

3 , which is the
operation count sometimes quoted in the literature.

In most implementations of Gaussian elimination, the row with the largest lead value and the first row are interchanged
during each reduction. This is referred to as partial pivoting and facilitates the minimization of truncation errors. Historically,
Cramer’s rule has been considered inaccurate when compared to these methods. As this paper will discuss, the perceived
inaccuracy does not originate from Cramer’s rule but rather from the method utilized for obtaining determinants.

This paper revisits Cramer’s rule [4] and introduces an alternative framework to the traditional LU-decomposition meth-
ods offering similar computational complexity and storage requirements. To the best of the authors’ knowledge, this is the
first work to demonstrate such characterization. In utilizing a technique similar to partial pivoting to calculate determinant
values, the algorithm’s stability properties are derived and shown to be comparable to LU-decomposition for asymmetric
systems.

The rest of this paper is structured as follows. Section 2 describes the algorithm and presents its computational com-
plexity. Section 3 discusses the stability of the algorithm including forward and backward error analysis. Section 4 presents
empirical results to support the proposed complexity assertions. Finally, a brief discussion and drawn conclusions are pro-
vided in Section 5.
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2. Revisiting Cramer’s rule

The proposed algorithm centers on the mathematically elegant Cramer’s rule, which states that the components of the
solution to a linear system in the form Ax = b (where A is invertible) are given by

xi = det
(

Ai(b)
)
/det(A), (1)

where Ai(b) denotes the matrix A with its ith column replaced by b [10]. Unfortunately, when working with large matrices,
Cramer’s rule is generally considered impractical. This stems from the fact that the determinant values are calculated via
minors. As the number of variables increases, the determinant computation becomes unwieldy [3]. The time complexity
is widely quoted as O(N!), which would make it useless for any practical application when compared to a method like
LU-decomposition at O(N3). Fortunately, Cramer’s rule can be realized in far lower complexity than O(N!). The complex-
ity of Cramer’s rule depends exclusively on the determinant calculations. If the determinants are calculated via minors,
that complexity holds. In an effort to overcome this limitation, matrix condensation techniques can reduce the size of the
original matrix to one that may be solved efficiently and quickly. As a result, Cramer’s rule becomes O(N3) similar to
LU-decomposition.

The other concern with Cramer’s rule pertains to the numerical instability, which is less studied [10]. A simple example
put forward in [12] suggests that Cramer’s rule is unsatisfactory even for 2-by-2 systems, mainly because of round error
difficulties. However, that argument heavily depends on the method for obtaining the determinants. If an accurate method
for evaluating determinants is used then Cramer’s rule can, in fact, be numerically stable. In fact, a later paper [5] revisited
the cited example and provided an example where Cramer’s rule yielded a highly accurate answer while Gaussian elimina-
tion with pivoting a poor one. We thus provide a detailed treatment of the stability and accuracy aspects of the proposed
determinant calculations employed by the proposed algorithm.

2.1. Chio’s condensation

Chio’s condensation [6] method reduces a matrix of order N to order N − 1 when evaluating its determinant. As will
be shown, repeating the procedure numerous times can reduce a large matrix to a size convenient for the application of
Cramer’s rule. Chio’s pivotal condensation theorem is described as follows. Let A = [aij] be an N × N matrix for which

a11 �= 0. Let D denote the matrix obtained by replacing elements aij not in the lead row or lead column by
∣∣ a11 a1 j

ai1 aij

∣∣, then it

can be shown that |A| = |D|
an−2

11
[6].

Note that this process replaces each element in the original matrix with a 2 × 2 determinant consisting of the a11
element, the top value in the element’s column, the first value in the element’s row and the element being replaced. The
calculated value of this 2 × 2 determinant replaces the initial ai, j with a′

i, j . The first column and first row are discarded,
thereby reducing the original N × N matrix to an (N − 1) × (N − 1) matrix with an equivalent determinant. As an example,
we consider the following 3 × 3 matrix:

A =
∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ and its condensed form:

∣∣∣∣∣∣
0 0 0
0 (a11a22 − a21a12) (a11a23 − a21a13)

0 (a11a32 − a31a12) (a11a33 − a31a13)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
× × ×
× a′

22 a′
23

× a′
32 a′

33

∣∣∣∣∣∣∣
Obtaining each 2 × 2 determinant requires two multiplications and one subtraction. However, if the value of a1,1 is one,

then only a single multiplication is required. In the example above we note that a1,1 is used in each element as a multiplier
to the matrix element, for example, the equation for the matrix element in position (2,2) is a11a22 − a21a12. If in this
situation a11 = 1, then the equation changes to a22 − a21a12. This holds true for every element in the matrix. Therefore for
each condensation step k, if akk = 1 then (N − k)2 multiplications are removed.

In order to guarantee akk = 1, an entire row or column must be divided by akk . This value would need to be stored
because the determinant value calculated by Chio’s condensation would be reduced by this factor. To find the true value
at the end of the condensation, the calculated answer would need to be multiplied by each akk that was factored out.
Multiplying all of these values over numerous condensation steps would result in an extremely large number that would
exceed the floating point range of most computers. This is where the elegance of Cramer’s rule is exploited. Cramer’s
rule determines each variable by a ratio of determinants, xi = det(Ai(b))/det(A). Given that both determinants are from
the same condensation line, they both are reduced by the same akk values. The akk values factored out during Chio’s
condensation cancel during the application of Cramer’s rule. This allows the algorithm to simply discard the akk values in
the final computations. The actual determinant values are not correct, however the ratio evaluated at the core of Cramer’s
rule remains correct.
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