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In the Subgraph Isomorphism problem we are given two graphs F and G on k and n
vertices respectively as an input, and the question is whether there exists a subgraph
of G isomorphic to F . We show that if the treewidth of F is at most t, then there is a
randomized algorithm for the Subgraph Isomorphism problem running in time O∗(2kn2t).
Our proof is based on a novel construction of an arithmetic circuit of size at most nO(t)

for a new multivariate polynomial, Homomorphism Polynomial, of degree at most k, which
in turn is used to solve the Subgraph Isomorphism problem. For the counting version
of the Subgraph Isomorphism problem, where the objective is to count the number of
distinct subgraphs of G that are isomorphic to F , we give a deterministic algorithm running
in time and space O∗(

( n
k/2

)
n2p) or

( n
k/2

)
nO(t log k). We also give an algorithm running in

time O∗(2k
( n

k/2

)
n5p) and taking O∗(np) space. Here p and t denote the pathwidth and

the treewidth of F , respectively. Our work improves on the previous results on Subgraph

Isomorphism, it also extends and unifies most of the known results on sub-path and sub-
tree isomorphisms.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider the classical problem of finding and counting a fixed pattern graph F on k vertices in an n-
vertex host graph G , when we restrict the treewidth of the pattern graph F by t . More precisely the problems we consider
are the Subgraph Isomorphism problem and the #Subgraph Isomorphism problem. In the Subgraph Isomorphism problem
we are given two graphs F and G on k and n vertices respectively as an input, and the question is whether there exists
a subgraph in G which is isomorphic to F ? In the #Subgraph Isomorphism problem the objective is to count the number
of distinct subgraphs of G that are isomorphic to F . Recently #Subgraph Isomorphism, in particular when F has bounded
treewidth, has found applications in the study of biomolecular networks. We refer to Alon et al. [1] and references therein
for further details.

In a seminal paper Alon et al. [3] introduced the method of Color-Coding for the Subgraph Isomorphism problem,
when the treewidth of the pattern graph is bounded by t and obtained randomized as well as deterministic algorithms
running in time 2O(k)nO(t) . This algorithm was derandomized using k-perfect hash families. In particular, Alon et al. [3]
gave a randomized O∗(5.4k)2 time algorithm and a deterministic O∗(ck) time algorithm, where c is a large constant, for
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the k-Path problem, a special case of Subgraph Isomorphism where F is a path of length k. There have been a lot of efforts
in parameterized algorithms to reduce the base of the exponent of both deterministic as well as the randomized algorithms
for the k-Path problem. In the first of such attempts, Chen et al. [10] and Kneis et al. [17] independently discovered the
method of Divide and Color and gave a randomized algorithm for k-Path running in time O∗(4k). Chen et al. [10] also
gave a deterministic algorithm running in time O∗(4k+o(k)) using an application of universal sets. While the best known
deterministic algorithm for k-Path problem still runs in time O∗(4k+o(k)), the base of the exponent of the randomized
algorithm for the k-Path problem has seen a drastic improvement. Koutis [18] used an algebraic approach based on group
algebras for k-Path and gave a randomized algorithm running in time O∗(23k/2) = O∗(2.83k). Williams [21] augmented this
approach with more random choices and several other ideas and gave an algorithm for k-Path running in time O∗(2k).
Currently the fastest randomized algorithm for the problem is due to Björklund et al. [6], which runs in time O∗(1.66k).

While there has been a lot of work on the k-Path problem, there has been almost no progress on other cases of the
Subgraph Isomorphism problem until last year. Cohen et al. gave a randomized algorithm that for an input digraph D
decides in time O∗(5.704k) if D contains a given out-tree with k vertices [11]. They also showed how to derandomize
the algorithm in time O∗(6.14k). Amini et al. [4] introduced an inclusion–exclusion based approach in the classical Color-

Coding and using it gave a randomized 5.4knO(t) time algorithm and a deterministic 5.4k+o(k)nO(t) time algorithm for the
Subgraph Isomorphism problem, when F has treewidth at most t . Koutis and Williams [19] generalized their algebraic
approach for k-Path to k-Tree, a special case of Subgraph Isomorphism problem where F is a tree on k-vertices, and
obtained a randomized algorithm running in time O∗(2k) for k-Tree. In this work we generalize the results of Koutis and
Williams by extending the algebraic approach to much more general classes of graphs, namely, graphs of bounded treewidth.
More precisely, we give a randomized algorithm for the Subgraph Isomorphism problem running in time O∗(2k(nt)t), when
the treewidth of F is at most t . The road map suggested by Koutis and Williams [19] and Williams [21] is to reduce
the problem to checking a multilinear term in a specific polynomial of degree at most k. However, the construction of
such polynomial is non-trivial and requires new ideas. Our first contribution is the introduction of a new polynomial of
degree at most k, namely Homomorphism Polynomial, using a relation between graph homomorphisms and injective graph
homomorphisms for testing whether a graph contains a subgraph which is isomorphic to a fixed graph F . We show that if
the treewidth of the pattern graph F is at most t , then it is possible to construct an arithmetic circuit of size O∗((nt)t) for
Homomorphism Polynomial which combined with a result of Williams [21] yields our first theorem.

In the second part of the paper we consider the problem of counting the number of pattern subgraphs, that is, the
#Subgraph Isomorphism problem. A natural question here is whether we can solve the #Subgraph Isomorphism problem
in O∗(ck) time, when the k-vertex graph F is of bounded treewidth or whether we can even solve the #k-Path problem
in O∗(ck) time? Flum and Grohe [13] showed that the #k-Path problem is #W[1]-hard and hence it is very unlikely that
the #k-Path problem can be solved in time f (k)nO(1) where f is any arbitrary function of k. In another negative result,
Alon and Gutner [2] have shown that one cannot hope to solve #k-Path better than O(nk/2) using the method of Color-

Coding. They show this by proving that any family F of “balanced hash functions” from {1, . . . ,n} to {1, . . . ,k}, must
have size Ω(nk/2). On the positive side, very recently Vassilevska and Williams [20] studied various counting problems
and among various other results gave an algorithm for the #k-Path problem running in time O∗(2k(k/2)!( n

k/2

)
) and space

polynomial in n. Björklund et al. [5] introduced the method of “meet-in-the-middle” and gave an algorithm for the #k-

Path problem running in time and space O∗(
( n

k/2

)
). They also gave an algorithm for #k-Path problem running in time

O∗(3k/2
( n

k/2

)
) and polynomial space, improving on the polynomial space algorithm given in [20]. We extend these results to

the #Subgraph Isomorphism problem, when the pattern graph F is of bounded treewidth or pathwidth. And here also graph
homomorphisms come into play! By making use of graph homomorphisms we succeed to extend the applicability of the
meet-in-the-middle method to much more general structures than paths. Combined with other tools—inclusion–exclusion,
the Disjoint Sum problem, separation property of graph of bounded treewidth or pathwidth and the trimmed variant of
Yate’s algorithm presented in [7]—we obtain the following results. Let F be a k-vertex graph and G be an n-vertex graph
of pathwidth p and treewidth t . Then #Subgraph Isomorphism is solvable in time O∗(

( n
k/2

)
n2p) and

( n
k/2

)
nO(t log k) and

space O∗(
( n

k/2

)
). We also give an algorithm for #Subgraph Isomorphism that runs in time O∗(2k

( n
k/2

)
n3pt2t) (respectively

2k
( n

k/2

)
nO(t log k)) and takes O∗(np) space (respectively O∗(nt) space). Thus our work not only improves on known results on

Subgraph Isomorphism of Alon et al. [3] and Amini et al. [4] but it also extends and generalize most of the known results
on k-Path and k-Tree of Björklund et al. [5], Koutis and Williams [19] and Williams [21].

The main theme of both algorithms, for finding and for counting a fixed pattern graph F , is to use graph homomorphisms
as the main tool. Counting homomorphisms between graphs has found applications in variety of areas, including extremal
graph theory, properties of graph products, partition functions in statistical physics and property testing of large graphs. We
refer to the excellent survey of Borgs et al. [8] for more references on counting homomorphisms. One of the main advantages
of using graph homomorphisms is that in spite of their expressive power, graph homomorphisms between many structures
can be counted efficiently. Secondly, it allows us to generalize various algorithm for counting subgraphs with an ease. We
combine counting homomorphisms with the recent advancements on computing different transformations efficiently on
subset lattice.
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