
Journal of Computer and System Sciences 78 (2012) 823–852

Contents lists available at SciVerse ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Verification of object-oriented programs: A transformational approach

Krzysztof R. Apt a,b,∗, Frank S. de Boer a,c, Ernst-Rüdiger Olderog d, Stijn de Gouw a,c

a Centre for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands
b University of Amsterdam, Institute of Language, Logic and Computation, Amsterdam, The Netherlands
c Leiden Institute of Advanced Computer Science, University of Leiden, The Netherlands
d Department of Computing Science, University of Oldenburg, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 April 2010
Received in revised form 16 February 2011
Accepted 5 August 2011
Available online 25 August 2011

Keywords:
Object-oriented programs
Null references
Aliasing
Inheritance
Subtyping
Syntax-directed transformation
Recursive programs
Program verification
Strong partial correctness
Relative completeness

We show that verification of object-oriented programs by means of the assertional method
can be achieved in a simple way by exploiting a syntax-directed transformation from
object-oriented programs to recursive programs. This transformation suggests natural
proofs rules and its correctness helps us to establish soundness and relative complete-
ness of the proposed proof system. One of the difficulties is how to properly deal in the
assertion language with the instance variables and aliasing. The discussed programming
language supports arrays, instance variables, failures and recursive methods with param-
eters. We also explain how the transformational approach can be extended to deal with
other features of object-oriented programming, like classes, inheritance, subtyping and dy-
namic binding.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background and motivation

Ever since its introduction in [14] the assertional method has been one of the main approaches to program verification.
Initially proposed for the modest class of while programs, it has been extended to several more realistic classes of programs,
including recursive programs (starting with [15]), programs with nested procedure declarations (see [19]), parallel programs
(starting with [23] and [24]), and distributed programs based on synchronous communication (see [4]). At the same time
research on the theoretical underpinnings of the proposed proof systems resulted in the introduction in [10] of the notion of
relative completeness and in the identification of the inherent incompleteness for a comprehensive ALGOL-like programming
language (see [9]).

However, (relative) completeness of proof systems proposed for current object-oriented programming languages (see
the related work section below) remained largely beyond reach because of the many intricate and complex features of
languages like Java. In this paper we present a transformational approach to the formal justification of proof systems for
object-oriented programming languages. We focus on the following main characteristics of objects:

• objects possess (and encapsulate) their own (so-called instance) variables, and
• objects interact via method calls.

* Corresponding author at: Centre for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands.
E-mail addresses: apt@cwi.nl (K.R. Apt), F.S.de.Boer@cwi.nl (F.S. de Boer), olderog@informatik.uni-oldenburg.de (E.-R. Olderog).

0022-0000/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2011.08.002

http://dx.doi.org/10.1016/j.jcss.2011.08.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:apt@cwi.nl
mailto:F.S.de.Boer@cwi.nl
mailto:olderog@informatik.uni-oldenburg.de
http://dx.doi.org/10.1016/j.jcss.2011.08.002


824 K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852

The execution of a method call involves a temporary transfer of control from the local state of the caller object to that of
the called object (also referred to by callee). Upon termination of the method call the control returns to the local state of
the caller. The method calls are the only way to transfer control from one object to another. We illustrate our approach
by a syntax-directed transformation of the considered object-oriented programs to recursive programs. This transformation
naturally suggests the corresponding proof rules. The main result of this paper is that the transformation preserves (relative)
completeness.

To make this approach work a number of subtleties need to be taken care of. To start with, the ‘base’ language needs
to be appropriately chosen. More precisely, to properly deal with the problem of avoiding methods calls on the null object
we need a failure statement. In turn, to deal in a simple way with the call-by-value parameter mechanism we use parallel
assignment and block statement. Further, to take care of the local variables of objects at the level of assertions we need to
appropriately define the assertion language and deal with the substitution and aliasing.

We introduced this approach to the verification of object-oriented programs in our recent book [3] where we proved
soundness. The aim of this paper is to provide a systematic and self-contained presentation which focuses on (relative)
completeness and to explain how to extend this approach to other features of object-oriented programming. Readers inter-
ested in example correctness proofs may consult [3, pp. 226–237].

1.2. Related work

The origins of the proof theory for recursive method calls presented here can be traced back to [12]. However, in [12] the
transformational approach to soundness and relational completeness was absent and failures were not dealt with. In [25]
an extension to the typical object-oriented features of inheritance and subtyping is described. There is a large literature on
assertional proof methods for object-oriented languages, notably for Java. For example, [17] discusses a weakest precondition
calculus for Java programs with annotations in the Java Modeling Language (JML). JML can be used to specify Java classes
and interfaces by adding annotations to Java source files. An overview of its tools and applications is provided in [8]. In [16]
a Hoare logic for Java with abnormal termination caused by failures is described. However, this logic involves a major
extension of the traditional Hoare logic to deal with failures for which the transformational approach breaks down.

Object-oriented programs in general give rise to dynamically evolving pointer structures as they occur in programming
languages like Pascal. This leads to the problem of aliasing. There is a large literature on logics dealing with aliasing. One
of the early approaches, focusing on the linked data structures, is described in [21]. A more recent approach is that of
separation logic described in [28]. In [1] a Hoare logic for object-oriented programs is introduced based on an explicit repre-
sentation of the global store in the assertion language. In [5] restrictions on aliasing are introduced to ensure encapsulation
of classes in an object-oriented programming language with pointers and subtyping.

Recent work on assertional methods for object-oriented programming languages (see for example [6]) focuses on object
invariants and a corresponding methodology for modular verification. In [22] also a class of invariants is introduced which
support modular reasoning about complex object structures.

Formal justification of proof systems for object-oriented programming languages have been restricted to soundness (see
for example [30] and [18]). Because of the many intricate and complex features of current object-oriented programming
languages (relative) completeness remained largely beyond reach. Interestingly, in the above-mentioned [1] the use of the
global store model is identified as a potential source of incompleteness.

1.3. Technical contributions

The proof system for object-oriented programs presented in our paper is based on an assertion language comparable
to JML. This allows for the specification of dynamically evolving object structures at an abstraction level which coincides
with that of the programming language: in this paper the only operations on objects we allow are testing for equality
and dereferencing. Our transformation of the considered object-oriented programs to recursive programs preserves this
abstraction level. As a consequence we have to adapt existing completeness proofs to recursive programs that use variables
ranging over abstract data types, e.g., the type of objects.

In this paper we focus on strong partial correctness which requires absence of failures. Note that absence of failures is
naturally expressed by a corresponding condition on the initial state, that is, by a corresponding notion of weakest precondi-
tion. Similarly, total correctness of recursive programs is also naturally expressed by weakest preconditions, see [2].

To express weakest preconditions over abstract data types in an assertion language [29] use a coding technique that
requires a weak second-order language. In contrast, we introduce here a new state-based coding technique that allows us to
express weakest preconditions over abstract data types in the presence of infinite arrays in a first-order assertion language.

Further, we generalize the original completeness proof of [13] for the partial correctness of recursive programs to weakest
preconditions in order to deal with strong partial correctness. The completeness proof of [13] is based on the expression of
the graph of a procedure call in terms of its strongest postcondition of a precondition which “freezes” the initial state by
some fresh variables. If we use instead weakest preconditions to express the graph of a procedure call these freeze variables
are used to denote the final state. Because of possible divergence or failures however we cannot eliminate in the precondition
these freeze variables by existential quantification. As such the completeness proof of [13] breaks down. We show in this



Download English Version:

https://daneshyari.com/en/article/430731

Download Persian Version:

https://daneshyari.com/article/430731

Daneshyari.com

https://daneshyari.com/en/article/430731
https://daneshyari.com/article/430731
https://daneshyari.com

