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1. Introduction

Temporal logics, which are modal logics that enable the description of occurrence of events in time, serve as a classical
tool for specifying behaviors of concurrent programs [1]. The appropriateness of temporal logics for algorithmic verification
follows from the fact that finite-state programs can be modeled by finite propositional Kripke structures, whose properties
can be specified using propositional temporal logic. This yields fully-algorithmic methods for synthesis and for reasoning
about the correctness of programs. These methods consider two types of temporal logics: linear and branching [2]. In linear
temporal logics, each moment in time has a unique possible future, while in branching temporal logics, each moment in time
may split into several possible futures. Thus, if we model a program by a Kripke structure, then linear temporal logic
formulas are interpreted over paths in the Kripke structure (and thus refer to a single computation of the program), while
branching temporal logic formulas are interpreted over states in the Kripke structure (and thus refer to all the computations
of the program).

Striving for maximality and correspondence to natural languages, philosophers developed temporal logics that provide
temporal connectives that refer to both past and future [3,4]. Striving for minimality, computer scientists usually use tem-
poral logics that provide only future-time connectives. Since program computations have a definite starting time and since,
in this case, past-time connectives add no expressive power to linear temporal logics [5], this seems practical. Neverthe-
less, enriching linear temporal logics with past-time connectives makes the formulation of specifications more intuitive [6].
Furthermore, it is known that it also makes the specifications shorter: the logic LTL,, which augments LTL with past-time
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connectives is exponentially more succinct than LTL [7]. At the same time, adding past connectives does not increase the
complexity of the validity and the model-checking problems [6,8].

Adding past time constructs is also natural in branching temporal logics. The question we raise here is what the effect is
of adding such connectives to branching temporal logics on the expressiveness and computational complexity of the logics.
Examining this question, we found in the literature several logics that extend branching temporal logics with past-time
connectives; see review in [9]. Yet, until the publication of [10] there was no systematic study of the past in branching
temporal logics.

We distinguished in [10] between two possible views regarding the nature of past. In the first view, past is branching and
each moment in time may have several possible futures and several possible pasts. In the second view, past is linear and each
moment in time may have several possible futures and a unique past. Both views assume that past is finite. Namely, they
consider only paths that start at a definite starting time, since a computation always has a starting point. (For a different
view of this point, see [9].)

Before going on with our two views, let us consider the branching temporal logics with past that we found in the litera-
ture. The original version of propositional dynamic logic (PDL), as presented by Pratt in [11], includes a converse construction.
The converse construction reverses the program, thus enabling the specifications to refer to the past. As each state in a
program may have several predecessors, converse-PDL corresponds to the branching-past interpretation. Beyond our aspi-
ration to replace the PDL system with branching temporal logics used nowadays, our main complaint about the converse
construction is that it allows infinite paths in the reversed programs. Thus, it does not reflect the (helpful, as we shall show)
fact that programs have a definite starting time. As a result, combining the converse construction with other constructions,
e.g. the loop construction and the repeat construction, results in quite complicated logics [12-14]: they do not satisfy the
finite model property, their decidability becomes more expensive, and no model-checking procedures are presented for them.
In addition, while converse-DPDL satisfies the tree model property [14], the logics we introduce for the branching-past inter-
pretation do not satisfy it. So, intuitively, our branching past is “more branching”. In spite of this, our logics satisfy the finite
model property. The same tolerance towards paths that backtrack the transition relation without ever reaching an initial
state is found in POTL, which augments the branching temporal logic B(X, F, G) with past-time connectives [15], and in the
reverse operators in [16].

A logic PCTL*, which augments the branching temporal logic CTL* with past-time connectives, is introduced in [17].
Formulas of PCTL* are interpreted over computation trees. Thus, PCTL* corresponds to the linear-past interpretation. Nev-
ertheless, quantification over the past in the semantics of PCTL* is very weak, making the past in PCTL* very weak. For
example, the PCTL* formula EXEYtrue (“exists a successor state for which there exists a predecessor state that satisfies
true”) is not satisfiable. It is not surprising then, that PCTL* is not more expressive than CTL* (a similar limited past is
discussed in [18]). Another augmentation of CTL* with past-time connectives is the Ockhamist computational logic (OCL), pre-
sented in [19]. We found the semantics of OCL unsatisfactory, as it is interpreted over structures that are not fusion closed.
(Fusion closure is a basic property of state-transition structures; see [20].)

In this paper, we consider the logics CTLZp and CTL;, as well as their sub-languages CTLy, and CTLy,. Syntactically, CTL;IJ
and CTLl*p are exactly the same: both extend the full branching temporal logic CTL* with past-time connectives. Semantically,
we have two completely different interpretations. Formulas of CTLI’;p are interpreted over states of a Kripke structure with
a definite initial state. Since each state in a Kripke structure may have several successors and predecessors, this interpre-
tation induces a “branching reference” to both future and past. There are two ways to think of such branching structures.
In [11], the branching reflects nondeterminism, and the structures are simply state-transition graphs, with CTL;p formu-
las being able to quantify both about forward paths and backward paths. For example, in this view, the CTLy, formula
AG(grant — EP(req)) specifies that whenever the system is in a configuration in which a grant is given, there is a pos-
sibility to reach this configuration along a computation in which a request was issued (the temporal operator P stands
for “past” - the dual of future-time operator “eventually”). Note that a configuration in which a grant is given may be
reachable by several computation. The specification does not require a request to be issued along all the computations that
lead to the configuration, and only states that at least one such computation exists. In [15], a different view for branching
past is suggested. There, the structure describes one computation, with processes that can fork and join. The initial state
corresponds to a single initial process, a state with several successors corresponds to creating new processes, and a state
with several predecessors corresponds to merging processes. Unlike [15], which allows infinite paths going back in time,
we consider only paths that start in the initial state and thus ignore computations which can be traversed backwards an
infinite number of steps. For example, in this view, the CTLy, formula AG(term — ((EPtermq) A--- A (EPtermy))) states that
the entire system can terminate only after processes 1,...,n have terminated. Indeed, the formula states that if the system
has a configuration in which it terminates, then all processes have terminated within the sequence of forks and joins that
has led to this configuration.

Formulas of CTL;,, on the other hand, are interpreted over nodes of a computation tree obtained by, say, unwinding a
Kripke structure. Since each node in a computation tree may have several successors but only one predecessor (except the
root that has no predecessor), this interpretation induces a linear reference to past and a branching reference to future.

2 Thus, for readers that still ponder about the title of this paper, [10] provided, once and for all, a systematic study of temporal logics that combine
past-time operators (e.g., “once”) with branching path quantification (e.g., “for all”).
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