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ARTICLE INFO ABSTRACT
Artigle history; A square in a word is composed of two adjacent occurrences of a nonempty word. This
Available online 15 March 2013 note gives a simple proof and a straight construction of the existence of an infinite binary

word that contains only three squares. No infinite binary word can contain fewer squares.

Key Wo.rds'. . The only factors of exponent larger than two that our infinite binary word contains are
Combinatorics on words ! .. .
Repetitions two cubes. Furthermore, we provide two additional results on alphabets of size 3 and 4.

Word morphisms We prove that there exists an infinite overlap-free ternary word containing only one square.
On a 4-letter alphabet we show there exists an infinite 3/2%-free 4-ary word containing
only one 3/2-power.
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1. Introduction

The number of repetitions in infinite words is a classic problem in combinatorics on words which, for the last century,
has been studied in depth. Let g(n) be the length of a longest binary word containing at most n squares. Then g(0) =3 (e.g.
010), g(1) =7 (e.g. 0001000) and g(2) =18 (e.g. 010011000111001101).

The question of behaviour of this function was posed by Erdos [6]. Entringer, Jackson, and Schatz [5] showed in 1974 that
there exists an infinite word with 5 different squares, yielding g(5) = oo. Later Fraenkel and Simpson [7] showed that there
exists an infinite binary word that has only three squares 00, 11, and 0101, and thus g(3) = co. A somewhat simplified
proof of this result was given by Rampersad, Shallit and Wang [13], using two uniform morphisms. Later, in 2006, Harju
and Nowotka [8] gave an even simpler proof of this result. We give here a new proof that the maximal length is infinite if
3 squares are allowed to appear in a binary word. Our proof is simpler than the original proof in [7] and uses a morphism
simpler than the proofs of [13] and [8].

The exponent of a word is the quotient of its length over its smallest period. For example alfalfa has period 3 and
exponent 7/3. A string with exponent e is also called an e-power. The notion of maximal exponent is central in questions
related to the avoidability of patterns in infinite words. An infinite word is said to avoid e-powers (resp. e™-powers) if the
exponents of its finite factors are smaller than e (resp. no greater than e).

The constraints on repetitions in infinite words have been raised to optimality after Dejean’s conjecture [4] on the
repetitive threshold associated with the alphabet size. The repetitive threshold (Dejean’s repetitive threshold) of order k is the
infimum of maximal exponents of factors of all (infinite) words over a k-letter alphabet.

Looking at the maximal exponent of factors in words containing a bounded number of ri-powers introduces a new
type of threshold (by this Badkobeh and Crochemore [2]). This constraint is called the finite-repetition threshold. For the
alphabet of k letters, FRt(k) is defined as the smallest rational number for which there exists an infinite word avoiding
FRt(k) " -powers and containing a finite number of r,-powers, where ry is Dejean’s repetitive threshold. Associated with the
finite-repetition threshold is the smallest number of ri-powers (limit repetitions), Rn(k), that an infinite Dejean’s word can
accommodate.
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Table 1
The gaps between consecutive occurrences of z = 000 are 1101,
11010011,1110100111, and 11100110100111.

gi(ac) = 01001110001101 000111 4
gi(abc) = 01001110001101 0011 000111 8
gi(ca) = 000111 01001110001101 10
g1(cba) = 000111 0011 01001110001101 14

The results by Karhumdki and Shallit appearing in [9] can then be restated as FRt(2) = 7/3. Deepening this result, in [2]
a new proof for FRt(2) = 7/3 is demonstrated and shows that the associated number of squares is 12 (Rn(2) = 12). This
idea was extended to ternary words in [1] where it is shown that FRt(3) =r3 = 7/4 and the minimum number of associated
r,-powers is 2.

Moreover, in [3] Badkobeh et al. show that there exists an infinite word on 4 letters containing only 2 7/5-powers and
no factor of exponent more than 7/5, proving FRt(4) =7/5 and Rn(4) = 2.

In this note, we provide two additional results of the ... type for alphabets of size 3 and 4. We show that there exists
an infinite overlap-free ternary word containing only one square and no e-power where 13 <e <2 (r3 =7/4).

On a 4-letter alphabet we show that there exists an infinite 3/2%-free 4-ary word containing only one 3/2-power and
no e-power where r4 <e <3/2 (r4=7/5).

2. Squares in binary words

A word is a sequence of letters drawn from a finite alphabet. We consider the ternary alphabet A = {a, b, ¢} and the
binary alphabet B = {0, 1}. A square is a word of the form uu where u is a nonempty (finite) word. This section is dedicated
to a new proof of the Fraenkel and Simpson result [7] stated as the following:

Theorem 1. (See [7].) There exists an infinite binary word containing only three squares.

Our proof relies on two morphisms f and g; defined as follows. The morphism f is defined from A to itself by

f(a) =abc,
f(b)=ac,
fle)=h.

Since the letter a is a prefix of f(a), the infinite word f= f°°(a) is well defined. It is known that this word is square-
free (see [10, Chapter 2]). It can additionally be checked that all square-free words of length 3 occur in f except aba and
cbc.

The morphism g is from A to B and defined by

g1(a)= 01001110001101,
g1(b)=0011,
g1(c)=000111.

Proposition 1. The infinite word g1 = g1(f) contains the 3 squares 00, 11, and 1010 only. The cubes 000 and 111 are the only
factors of exponent larger than 2 occurring in g1.

The codewords of the morphism g; form a prefix code, which implies that the morphism itself is an injective function.
Therefore the word g; can be parsed uniquely to recover the square-free word f. Proof of Proposition 1 relies on parsing
g1 by locating the occurrences of the triplet z= 000 in g;. Indeed, any occurrence of z preceded by 111 determines an
occurrence of a in f, and otherwise it is followed by 111 and determines an occurrence of c.

Gaps between occurrences of specific factors. For the purpose of the proof we define the gap function gap related to g; as
follows. For any factors u and v of g:

gap(u,v) = {|w| | uwv factor of g1 and only one occurrence of v in wv}.

Although gap is only used in the proof in a very restricted way, note that the gap between any two factors of g; is well
defined. Table 1 shows that gap(z,z) = {4, 8, 10, 14}.

2

Proof. We assume that w2 occurs in g; for some non-empty word w and distinguish three cases: where w? contains at

most one occurrence of z= 000, an even number of occurrences of it, or an odd number.
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