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Abstract

The Knuth–Morris–Pratt (KMP) pattern-matching algorithm guarantees both independence from alphabet size and worst-case
execution time linear in the pattern length; on the other hand, the Boyer–Moore (BM) algorithm provides near-optimal average-case
and best-case behaviour, as well as executing very fast in practice. We describe a simple algorithm that employs the main ideas of
KMP and BM (with a little help from Sunday) in an effort to combine these desirable features. Experiments indicate that in practice
the new algorithm is among the fastest exact pattern-matching algorithms discovered to date, apparently dominant for alphabet size
above 15–20.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Since 1977, with the publication of both the Boyer–Moore [2] and Knuth–Morris–Pratt [24] pattern-matching
algorithms, there have certainly been hundreds, if not thousands, of papers published that deal with exact pattern-
matching, and in particular discuss and/or introduce variants of either BM or KMP. The pattern-matching literature
has had two main foci:

1. reducing the number of letter comparisons required in the worst/average case (for example, [4–6,8,13–15], see
also [29, pp. 219–225]);

2. reducing the time requirement in the worst/average case (for example, [7,9,20,21,30]).
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This contribution resides in the second of these categories: in an effort to reduce processing time, we propose
a mixture of Sunday’s variant [30] of BM [2] with KMP [24,27]. Our goal is to combine the best/average case
advantages of Sunday’s algorithm (BMS) with the worst case guarantees of KMP. According to the experiments we
have conducted, our new algorithm (FJS) is among the fastest in practice for the computation of all occurrences
of a pattern p = p[1..m] in a text string x = x[1..n] on an alphabet Σ of size k. Moreover, based on �(m + k)-
time preprocessing, it guarantees that matching requires at most 3n − 2m letter comparisons and O(n) matching
time.

Several comparative surveys of pattern-matching algorithms have been published over the years [10,21,25,26,29]
and a useful website [3] is maintained that gives executable C code for the main algorithms (including preprocessing)
and describes their important features.

In this paper we first introduce, in Section 2, the new algorithm, establish its asymptotic time and space require-
ments in the worst case, and demonstrate its correctness. Next, extensions to the algorithm for large alphabets and
patterns with don’t-care letters are discussed in Section 3. Then in Section 4 we describe experiments that compare
Algorithm FJS with algorithms that, from the available literature, appear to provide the best competition in practice;
specifically,

• Horspool’s algorithm (BMH) [20];
• Sunday’s algorithm (BMS) [30];
• Reverse Colussi (RC) [7];
• Turbo-BM (TBM) [9].

Finally, in Section 5, we draw conclusions from our experiments.

2. The new algorithm

Algorithm FJS searches for matches to p = p[1..m] in x = x[1..n] by shifting p from left to right along x. At
the start of each step, position j = 1 of p is aligned with a position i ∈ 1..n − m + 1 in x, so that position m of p is
therefore aligned with position i′ = i + m − j in x.

In KMP matching, p is matched left-to-right with x[i],x[i + 1], and so on until either a match with all of p is
found or else a mismatch is located at some position j ∈ 1..m. In the case of a mismatch at j > 1, we say that a partial
match has been determined with p[1..j − 1]. As matching proceeds, both i and j are incremented, thus maintaining
the relationship i′ = i + m − j , the basic invariant of Algorithm FJS.

The strategy of FJS is as follows:

1. Whenever no partial match of p with x[i..i + m − 1] has been found, Sunday shifts (described below) are per-
formed to determine the next position i′ at which x[i′] = p[m]. When such an i′ has been found, KMP matching
is then performed on p[1..m − 1] and x[i′ − m + 1..i′ − 1].

2. If a partial match of p with x has been found, KMP matching is continued on p[1..m].

The pseudocode shown below illustrates this overall strategy.

Algorithm 1 (Hybrid matching).
Find all occurrences of p = p[1..m] in x = x[1..n]

if m < 1 then return
j ← 1; i ← 1; i ′ ← m; m′ ← m − 1
while i′ � n do

if j � 1 then

– If no partial match with p, perform Sunday shifts,
– returning next position i′ such that x[i′] = p[m]
SUNDAY-SHIFT(i′)
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