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The parameterized longest previous factor (pLPF) problem as defined for parameterized
strings (p-strings) adds a level of parameterization to the longest previous factor (LPF)
problem originally defined for traditional strings. In this work, we consider the construction
of the pLPF data structure and identify the strong relationship between the pLPF linear
time construction and several variations of the problem. Initially, we propose a taxonomy
of classes for longest factor problems. Using this taxonomy, we show an interesting
connection between the pLPF and popular data structures. It is shown that a subset of
longest factor problems may be created with the pLPF construction. More specifically,
the pLPF problem is used as a foundation to achieve the linear time construction of popular
data structures such as the LCP, parameterized-LCP (pLCP), parameterized-border (p-border)
array, and border array. We further generalize the permuted-LCP for p-strings and provide
a linear time construction. A number of new variations of the pLPF problem are proposed
and addressed in linear time for both p-strings and traditional strings, including the longest
not-equal factor (LneF), longest reverse factor (LrF), and longest factor (LF). The framework
of the pLPF construction is exploited to efficiently address a multitude of data structures
with prospects in various applications. Finally, we implement our algorithms and perform
various experiments to confirm theoretical results.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The longest previous factor (LPF) problem finds for each suffix at i in an n-length traditional string W = W [1]W [2] . . .
W [n] a longest factor W [h . . .n] with 1 � h < i � n preceding the suffix W [i . . .n] in W . Crochemore and Ilie [15] studied
this data structure for traditional strings. In order to construct the LPF array, it was shown in [15] that the suffix array SA is
useful to quickly identify the most lexicographically similar suffixes that are candidate previous factors for the chosen suffix
in question. The use of SA expedites the work to construct the LPF array in linear time. The linear time construction of the
LPF data structure makes it a justified choice to use in various applications. The LPF array is naturally setup for applications
in string compression [41] and detecting runs [32] within a string.

In [10], we introduce the parameterized longest previous factor (pLPF) to extend the traditional LPF problem to parame-
terized strings (p-strings). A p-string, introduced by Baker [5], is a generalized form of a string produced from the constant
alphabet Σ and the parameter alphabet Π . The alphabet to which a symbol belongs determines exactly how the symbol is
matched. The parameterized pattern matching (p-match) problem is to identify an equivalence between a pair of p-strings S
and T when (1) the individual constant symbols match and (2) there exists a bijection between the parameter symbols of S
and T . Prominent applications concerned with the p-match problem include detecting plagiarism in academia and industry,
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reporting similarities in biological sequences [38], discovering cloned code segments in a program [6], and even answering
critical legal questions regarding the unauthorized use of intellectual property [40]. Baker [5] identifies that the p-match
bijection can be handled by using a previous (prev) encoding scheme where a p-match exists between S and T if and only
if prev(S) = prev(T ). The prev encoding codes each symbol s with the same constant s if s ∈ Σ . Otherwise when s ∈ Π ,
prev encodes s with the integer distance to the previous s in T or 0 if it is the first instance of s in T . For example, the
following p-strings that represent program statements f /a∗q−++q and f /b∗c −++c over the alphabets Σ = {∗, /,−,+}
and Π = {a,b, c, f ,q} successfully p-match since prev(“ f /a ∗ q − + + q”) = “0/0 ∗ 0 − + + 4” = prev(“ f /b ∗ c − + + c”).
By solving a problem with the p-match, we are also solving the same problem with an exact match when |Π | = 0 and a
mapped match (m-match) when |Σ | = 0 [4]. We show in [10] that the pLPF problem is not a straightforward extension
of the LPF problem because of the added challenges of the p-match and dynamic nature of the parameterized suffixes
(p-suffixes) under the prev encoding. We provide an algorithm in [10,11] to construct the pLPF data structure in linear
time. A significant contribution of [10] is identifying the connection between the pLPF data structure with other popu-
lar data structures such as the LPF, longest common prefix (LCP), and parameterized longest common prefix (pLCP). We
are influenced by the variations of the traditional LPF problem studied in [18,17] to further define variations for the pLPF
problem.

Main contributions. In this work, we extend the power of the pLPF construction by addressing variations of the data
structure with the same algorithm. Initially, we consider the pLPF problem and prove its linear time construction. We are
the first to introduce a taxonomy for longest factor problems, which identifies that problems satisfying certain properties
can be solved with the same pLPF algorithm by simply altering the preprocessing and postprocessing. The pLPF framework
is the basis for the data structures in this paper. First, it is proven that the pLCP and the newly introduced permuted-
pLCP can be constructed with the pLPF framework in linear time. Next, we introduce three new variants of the pLPF array,
namely the parameterized longest not-equal factor (pLneF), parameterized longest reverse factor (pLrF), and parameterized
longest factor (pLF), and prove that we can use the pLPF framework to construct these variants in linear time. We identify
that the border array [39], an important data structure in string pattern matching, is also a variant of the pLPF . It is then
shown how to compute the parameterized-border (p-border) array in linear time using the pLPF framework. For simplicity,
throughout this work, our construction algorithms consider the most common case of p-strings – where the ordering of
p-suffixes behave like the ordering of regular suffixes. This corresponds to the case of Fig. 1(a) of [11]. A straightforward
implementation of the details in [11] allow the algorithms to support all the other cases identified. In terms of traditional
data structures such as the longest common prefix (LCP) and longest previous factor (LPF), we prove that our p-string
oriented algorithms can be used to solve these standard problems. Finally, we implement our algorithms considering all of
the details in [11] and confirm the linear time nature of the constructions. We also show how our newfound algorithms
compare with standard algorithms in terms of the traditional LCP and LPF constructions. The following theorems formalize
our core contributions, where pSAS denotes the p-suffix array on p-string S .

Theorem 16. Given an n-length p-string T , prevT = prev(T ), the prev encoding of T , and pSAT , the parameterized suffix array
for T , the algorithm compute_pLPF constructs the pLPF array in O (n) time.

Theorem 20. Given an n-length p-string T , prevT = prev(T ), the prev encoding of T , and pSAT , the parameterized suffix array
for T , the construct algorithm can be used to construct the pLCP and permuted-pLCP arrays in O (n) time.

Theorem 27. Given an n-length p-string T , prevT = prev(T ), pSAT , Q 1 = T [1 . . .n − 1]$1 , Q 2 = T [1 . . .n − 1]R $2 , Q = Q 1 ◦ Q 2 ,
prevT1 = prev(Q 1), prevT2 = prev(Q 2), and pSAQ , the pLneF, pLrF, and pLF data structures are each constructed in O (n) time.

Theorem 28. Given an n-length p-string T , prevT = prev(T ), the prev encoding of T , and pSAT , the parameterized suffix array
for T , the algorithm compute_p-border computes the p-border array in O (n) expected time.

2. Background/related work

Baker [6] identifies three types of pattern matching: (1) exact matching, (2) parameterized matching (p-match), and
(3) matching with modifications. The p-match generalizes exact matching by using a parameterized string (p-string) com-
posed of symbols from a constant symbol alphabet Σ and a parameter alphabet Π . A p-match exists between a pair of
p-strings S and T of length n when (1) the constant symbols σ ∈ Σ match and (2) there exists a bijection of parameter
symbols π ∈ Π between the p-strings. The first p-match breakthroughs, namely, the prev encoding and the parameterized
suffix tree (p-suffix tree) were introduced by Baker [5]. The p-suffix tree construction time was improved by Baker in [7].
Other contributions in the area of parameterized suffix trees include the improved construction in [29] and the random-
ized algorithms in [14,30,31]. Like the traditional suffix tree [22,39,1], the p-suffix tree [5] implementation suffers from a
large memory footprint. Other solutions that address the p-match problem without the space limitations of the p-suffix
tree include the parameterized-KMP [4] and parameterized-BM [8], variants of traditional pattern matching approaches.
Idury et al. [26] studied the multiple p-match problem using automata and a structure that is now referred to as the
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