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We prove that sorting by reciprocal translocations can be done in O (n3/2
√

log(n) ) for
an n-gene genome. Our algorithm is an adaptation of the algorithm of Tannier, Bergeron
and Sagot for sorting by reversals. This improves over the O (n3) algorithm for sorting by
reciprocal translocations given by Bergeron, Mixtacki and Stoye (2006) [4].
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1. Introduction

In this paper we study the problem of sorting by reciprocal translocations (abbreviated SRT). Reciprocal translocations
exchange non-empty ends between two chromosomes. Given two multi-chromosomal genomes A and B , the problem of SRT
is to find a shortest sequence of reciprocal translocations that transforms A into B . SRT was first introduced by Kececioglu
and Ravi [11] and was given a polynomial time algorithm by Hannenhalli [6]. Bergeron, Mixtacki and Stoye [4] pointed to an
error in Hannenhalli’s proof of the reciprocal translocation distance formula and consequently in Hannenhalli’s algorithm.
They presented a new O (n3) algorithm, which to the best of our knowledge, is the only extant correct algorithm for
SRT.1

Reversals (or inversions) reverse the order and the direction of transcription of the genes in a segment inside a chromo-
some. Given two uni-chromosomal genomes π1 and π2, the problem of sorting by reversals (abbreviated SBR) is to find a
shortest sequence of reversals that transforms π1 into π2. This problem has been intensively studied [8,5,9,1,2,15]. Tannier,
Bergeron and Sagot [15] presented an elegant algorithm for SBR that can be implemented in O (n3/2

√
log(n) ) using a clever

data structure by Kaplan and Verbin [10]. This is currently the fastest algorithm for SBR.
In this paper we prove that SRT can be solved in O (n3/2

√
log(n) ) for an n-gene genome. Our algorithm for SRT is similar

to the algorithm by Tannier, Bergeron and Sagot [15] for SBR. The key idea is to recast translocations as reversals, and
then exploit the novel theoretical improvements in SBR theory to obtain faster SRT algorithms. (It should be noted that
Hannenhalli and Pevzner have already established and exploited the basic connection between translocations and reversals,
in the context of sorting a genome by reversals and translocations [7].) Our approach builds on generalizing the overlap
graph. Most studies of SBR to date relied explicitly or implicitly on the combinatorial structure of the overlap graph for
representing the relations between two permutations. Since translocations involve multiple chromosomes, we generalize
the notion of (uni-chromosomal) overlap graph to include chromosomal information, and show that the same conceptual
algorithmic framework developed for SBR applies to SRT, via this generalized overlap graph. While our final algorithm is
very similar to that of Tannier et al., the proofs had to be completely redone. Another contribution of this study is in
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1 Li et al. [12] gave a linear time algorithm for computing the reciprocal translocation distance (without producing a shortest sequence). Wang et al. [16]
presented an O (n2) algorithm for SRT. However, the algorithms in [12,16] rely on an erroneous theorem of Hannenhalli and hence provide incorrect results
in certain cases.
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showing that the general SRT problem can be reduced in linear time to a special case, and thus time complexity analysis
can be done for such special cases only.

The paper is organized as follows. The necessary preliminaries are given in Section 2. In Section 3 we give a linear time
reduction from SRT to a simpler restricted subproblem. In Section 4 we prove the main theorem and present the algorithm
for the restricted subproblem. In Section 5 we describe an O (n3/2

√
log(n) ) implementation of the algorithm. A preliminary

version of this study was published in the proceedings of CPM 2006 [13].

2. Preliminaries

This section provides a basic background for the analysis of SRT. It follows to a large extent the nomenclature and
notation of [6,9,4]. In the model we consider, a genome is a set of chromosomes. A chromosome is a sequence of genes.
A gene is identified by a positive integer. All genes in the genome are distinct. When it appears in a genome, a gene is
assigned a sign of plus or minus. For example, the following genome consists of 8 genes in two chromosomes:

A1 = {
(1,−3,−2,4,−7,8), (6,5)

}
The reverse of a sequence of genes I = (x1, . . . , xl) is −I = (−xl, . . . ,−x1). A reversal reverses a segment of genes inside

a chromosome. Two chromosomes, X and Y , are identical if either X = Y or X = −Y . Therefore, flipping chromosome X
into −X does not affect the chromosome it represents. For example, the following are two equivalent representations of the
same genome

{
(1,−3,−2,4,−7,8), (6,5)

} ≡ {
(−8,7,−4,2,3,−1), (6,5)

}
Let X = (X1, X2) and Y = (Y1, Y2) be two chromosomes, where X1, X2, Y1, Y2 are sequences of genes. A translocation

cuts X into X1 and X2 and Y into Y1 and Y2 and exchanges segments between the chromosomes. It is called reciprocal if X1,
X2, Y1 and Y2 are all non-empty. There are two ways to perform a translocation on X and Y . A prefix–suffix translocation
switches X1 with Y2 resulting in:

(X1, X2), (Y1, Y2) ⇒ (−Y2, X2), (Y1,−X1)

A prefix–prefix translocation switches X1 with Y1 resulting in:

(X1, X2), (Y1, Y2) ⇒ (Y1, X2), (X1, Y2)

The following is an example of prefix–prefix and prefix–suffix translocations that cut the genome in the same place:

{
(1,−3,−2,4,−7,8), (6,5)

} ⇒ {
(6,−7,8), (1,−3,−2,4,5)

}
{
(1,−3,−2,4,−7,8), (6,5)

} ⇒ {
(−5,−7,8), (6,−4,2,3,−1)

}
Recall that chromosome flips do not affect the genome, but rather move between different representations of the same

genome. Thus we can mimic one type of translocation by a flip of one of the chromosomes followed by a translocation of
the other type.

For a chromosome X = (x1, . . . , xk) define Tails(X) = {x1,−xk}. Note that flipping X does not change Tails(X). For a
genome A define Tails(A) = ⋃

X∈A Tails(X). For example:

Tails(A1) = Tails
({

(1,−3,−2,4,−7,8), (6,5)
}) = {1,−8,6,−5}

Two genomes A′ and A′′ are co-tailed if Tails(A′) = Tails(A′′). In particular, two co-tailed genomes have the same number
of chromosomes (recall that all genes in a genome are unique). Note that if A′′ was obtained from A′ by performing a
reciprocal translocation then Tails(A′′) = Tails(A′). Therefore, SRT is defined only for genomes that are co-tailed. For the rest
of this paper the word “translocation” refers to a reciprocal translocation and we assume that the given genomes, A and B ,
are co-tailed.

2.1. The cycle graph

In this section we present the cycle graph of genomes A and B , which was first defined in [6]. Let N be the number of
chromosomes in A (equivalently, B). We shall always assume that both A and B contain the genes {1, . . . ,n}. The cycle graph
of A and B , denoted G(A, B), is an undirected graph defined as follows. The set of vertices is

⋃n
i=1{i0, i1}. The vertices i0

and i1 are called the two ends of gene i (think of them as the ends of a small arrow directed from i0 to i1). For every pair
of genes, i and j, where j immediately follows i in some chromosome of A (respectively, B) add a black (respectively, gray)
(undirected) edge

(i, j) ≡ (
out(i), in( j)

)
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