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For every graph H , there exists a polynomial-time algorithm deciding if a planar input
graph G can be contracted to H . However, the degree of the polynomial depends on the
size of H . We identify a class of graphs C such that for every fixed H ∈ C, there exists a
linear-time algorithm deciding whether a given planar graph G can be contracted to H . The
class C is the closure of planar triangulated graphs under taking of contractions. In fact, we
prove that a graph H ∈ C if and only if there exists a constant cH such that if the treewidth
of a graph is at least cH , it contains H as a contraction. We also provide a characterization
of C in terms of minimal forbidden contractions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

We consider simple graphs without loops and multiple edges. For a graph G , let V (G) be its vertex set and E(G) its edge
set. For notions not defined here, we refer the reader to the monograph on graph theory by Diestel [6].

1.1. Planar graphs

All graphs in this paper are planar. Plane graphs are always assumed to be drawn on the unit sphere and their edges are
arbitrary polygonal arcs (not necessarily straight line segments).

Embeddings. In this work, we only need to distinguish between essentially different embeddings of a planar graph. This
motivates the following definition. Two plane graphs G and H are combinatorially equivalent (G � H) if there exists a homeo-
morphism of the unit sphere (in which they are embedded) that transforms one into the other. The relation of being
combinatorially equivalent is reflexive, symmetric and transitive, and thus an equivalence relation. Let G be the class of all
plane graphs isomorphic to a planar graph G , and let us consider the quotient set G/ �. The equivalence classes (i.e., the
elements of the quotient set) can be thought of as embeddings. In fact, we will work with embeddings but for simplicity, we
will pick a plane graph representative for each embedding.
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Fig. 1. Graphs M6 and Γ6, respectively.

Dual. The dual of a plane graph G will be denoted by G∗ . Note that there is a one-to-one correspondence between the
edges of G and the edges of G∗ . We keep the convention that e∗ is the edge of G∗ corresponding to edge e of G .

Triangulation. A planar graph is called triangulated if it has an embedding in which every face is incident with exactly three
vertices. Let us recall two useful facts related to planar 3-connected graphs that we will need later.

Lemma 1.1. Triangulated planar graphs are 3-connected.

Lemma 1.2. A 3-connected planar graph has a unique embedding.

For proofs of these lemmas, see for instance the monograph of Mohar and Thomassen [16], Lemma 2.3.3, p. 31 and
Lemma 2.5.1, p. 39, respectively. From these two lemmas, every triangulated graph has a unique embedding.

Grids and walls. The k × k grid Mk has as its vertex set all pairs (i, j) for i, j = 0,1, . . . ,k − 1, and two vertices (i, j) and
(i′, j′) are joined by an edge if and only if |i − i′| + | j − j′| = 1.

For k � 2, let Γk denote the graph obtained from Mk by triangulating its faces as follows: add an edge between vertices
(i, j) and (i′, j′) if i − i′ = 1 and j′ − j = 1, and add an edge between corner vertex (k − 1,k − 1) and every external vertex
that is not already adjacent to (k −1,k −1), i.e., every vertex (i, j) with i ∈ {0,k −1} or j ∈ {0,k −1}, apart from the vertices
(k − 2,k − 1) and (k − 1,k − 2). The graph Γk is called a triangulated grid. See Fig. 1 for graphs M6 and Γ6. The dual Γ ∗

k of
a triangulated grid is called a wall.

Treewidth and MSOL. The fragment of second-order logic where quantified relation symbols must have arity 1 is called
monadic second-order logic (MSOL). A seminal result of Courcelle [4] is that on any class of graphs of bounded treewidth,
every problem definable in monadic second-order logic can be solved in time linear in the number of vertices of the graph.
Moreover, Courcelle’s result holds not just when graphs are given in terms of their edge relation, but also when the domain
of a structure encoding a graph G consists of the disjoint union of the set of vertices and the set of edges, as well as
unary relations V and E to distinguish the vertices and the edges, respectively, and also a binary incidence relation I which
denotes when a particular vertex is incident with a particular edge (thus, I ⊆ V × E). The reader is referred to Courcelle [4]
for more details and also for the definition of treewidth.

Lemma 1.3. (See [4].) For every fixed k and every problem P expressible in MSOL, there exists a linear-time algorithm for P in the
class of graphs of treewidth at most k.

Below we recall some other results related to treewidth that we will need later in the paper.

Lemma 1.4. (See (6.2) in [18].) Let m � 1 be an integer. Every planar graph with no m × m grid minor has treewidth � 6m − 5.

Lemma 1.5. (See (1.5) in [18].) If H is a planar graph with |V (H)| + 2|E(H)| � n, then H is isomorphic to a minor of the 2n × 2n grid.

Lemma 1.6. (See Theorem 6 in [2].) For any plane graph G and its dual G∗ , tw(G)∗ � tw(G) + 1.

Lemma 1.7. (See Theorem 1.1 in [1].) For every fixed k, there exists a linear-time algorithm deciding whether the input graph has
treewidth at most k.

Pasting along vertices and edges. Let G be a graph with induced subgraphs G1 and G2 such that V (G) = V (G1) ∪ V (G2)

and E(G) = E(G1) ∪ E(G2). Let G1 ∩ G2 denote the subgraph of G induced by V (G1) ∩ V (G2). Then we say that G arises
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