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In a previous paper we obtained an upper bound for the minimum number of components
of a 2-factor in a claw-free graph. This bound is sharp in the sense that there exist
infinitely many claw-free graphs for which the bound is tight. In this paper we extend
these results by presenting a polynomial algorithm that constructs a 2-factor of a claw-free
graph with minimum degree at least four whose number of components meets this bound.
As a byproduct we show that the problem of obtaining a minimum 2-factor (if it exists) is
polynomially solvable for a subclass of claw-free graphs. As another byproduct we give a
short constructive proof for a result of Ryjáček, Saito and Schelp.
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1. Introduction

In this paper we consider 2-factors of claw-free graphs. Graph factors are well-studied. See [16] for a survey. Our moti-
vation to study 2-factors goes back to the well-known NP-complete decision problem H-Cycle (cf. [9]) in which the problem
is to decide whether a given graph has a hamiltonian cycle, i.e., a connected 2-regular spanning subgraph. In the related
problem 2-Factor the connectivity condition is dropped, hence the problem is to decide whether a given graph admits
a 2-factor, i.e., a 2-regular spanning subgraph. This makes the problem considerably easier in the algorithmic sense: it is
well known that 2-Factor can be solved in polynomial time by matching techniques, and a 2-factor can be constructed in
polynomial time if the answer is YES (cf. [14]). Clearly, a hamiltonian cycle is a 2-factor consisting of one component, and
the minimum number of components of a 2-factor can be seen as a measure for how far a graph is from being hamilto-
nian. So, from an algorithmic viewpoint a natural question is to consider the problem of determining a 2-factor of a given
graph with a minimum number of components. Obviously, this is an NP-hard problem. Hence it makes sense to search for
2-factors with a reasonably small number of components if we aim for polynomial time algorithms. For this research we
have restricted ourselves to the class of claw-free graphs. This is a rich class containing, e.g., the class of line graphs and the
class of complements of triangle-free graphs. It is also a very well-studied graph class, both within structural graph theory
and within algorithmic graph theory; see [7] for a survey. Furthermore, computing a 2-factor with a minimum number of
components remains NP-hard for the class of claw-free graphs.

In [1] we already obtained an upper bound for the minimum number of components of a 2-factor in a claw-free graph.
This bound is sharp in the sense that there exist infinitely many claw-free graphs for which the bound is tight; we will
specify this later. When considering the related complexity problems, we soon realized that the proof methods used in [1]
need to be extended in order to obtain a polynomial algorithm that constructs a corresponding 2-factor, e.g., a 2-factor
whose number of components is at most our upper bound. In the present paper we present this polynomial time algorithm.
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2. Terminology and background

We consider graphs that are finite, undirected and simple, i.e., without multiple edges and loops. For notation and
terminology not defined in this paper we refer to [4].

Let G = (V (G), E(G)) be a graph of order |G| = |V (G)| = n and of size e(G) = |E(G)|. The neighbor set of a vertex x in
G is denoted by NG(x) = {y ∈ V (G) | xy ∈ E(G)}, and its cardinality by dG(x). We denote the minimum (vertex) degree of G
by δG = min{dG(x) | x ∈ V (G)}. If no confusion can arise we often omit the subscripts.

Let Kn denote the complete graph on n vertices. A graph F is called a 2-factor of a graph G if F is a 2-regular spanning
subgraph of G , i.e., if F is a subgraph of G with V (F ) = V (G) and dF (x) = 2 for all x ∈ V (F ). A claw-free graph is a graph
that does not contain an induced subgraph isomorphic to the four-vertex star K1,3 = ({u,a,b, c}, {ua, ub, uc}).

2.1. Known results

Several interesting problems are still open for claw-free graphs such as the conjecture of Matthews and Sumner [15]
that every 4-connected claw-free graph is hamiltonian. However, there is quite a lot known on 2-factors in claw-free graphs,
including some very recent results. Results of both Choudum and Paulraj [3] and Egawa and Ota [5] imply that every
claw-free graph with δ � 4 contains a 2-factor.

Theorem 1. (See [3,5].) A claw-free graph with δ � 4 has a 2-factor.

We observe that every 4-connected claw-free graph has minimum degree at least four, and hence has a 2-factor. A 2-con-
nected claw-free graph already has a 2-factor if δ = 3 [20]. However, in general a claw-free graph with δ � 3 does not have
to contain a 2-factor. Examples are easily obtained.

Faudree et al. [6] showed that every claw-free graph with δ � 4 has a 2-factor with at most 6n/(δ + 2) − 1 components.
Gould and Jacobson [11] proved that, for every integer k � 2, every claw-free graph of order n � 16k3 with δ � n/k has a
2-factor with at most k components. Fronček, Ryjáček and Skupień [8] showed that, for every integer k � 4, every claw-free
graph G of order n � 3k2 − 3 with δ � 3k − 4 and σk > n + k2 − 4k + 7 has a 2-factor with at most k − 1 components. Here
σk denotes the minimum degree sum of any k mutually nonadjacent vertices.

If a graph G is claw-free, 2-connected and has δ � 4, then G has a 2-factor with at most (n + 1)/4 components [13]. If a
graph G is claw-free, 3-connected and has δ � 4, then G has a 2-factor with at most 2n/15 components [13].

In [1] we considered claw-free graphs with δ � 4. Our motivation for this is as follows. We first note that the number of
components of a 2-factor in any graph on n vertices is obviously at most n/3. For claw-free graphs with δ = 2 that have a
2-factor we cannot do better than this trivial upper bound. This is clear from considering a disjoint set of triangles (cycles
on three vertices). For claw-free graphs with δ = 3 that have a 2-factor, the upper bound n/3 on its number of components
is also tight, as shown in [1]. Hence, in order to get a nontrivial result it is natural to consider claw-free graphs with δ � 4.

Our two main results in [1] provide answers to two open questions posed in [20].

Theorem 2. (See [1].) A claw-free graph G on n vertices with δ � 5 has a 2-factor with at most (n − 3)/(δ − 1) components unless G
is isomorphic to Kn.

Theorem 3. (See [1].) A claw-free graph G on n vertices with δ = 4 has a 2-factor with at most (5n − 14)/18 components, unless G
belongs to a finite class of exceptional graphs.

Both results are tight in the following sense. Let f2(G) denote the minimum number of components in a 2-factor of G .
Then in [20], for every integer d � 4, an infinite family {F d

i } of claw-free graphs with δ(F d
i ) � d is given such that f2(F d

i ) >

|F d
i |/d � |F d

i |/δ(F d
i ). This shows we cannot replace δ−1 by δ in Theorem 2. The bound in Theorem 3 is tight in the following

sense. There exists an infinite family {Hi} of claw-free graphs with δ(Hi) = 4 such that

lim|Hi |→∞
f2(Hi)

|Hi| = 5

18
.

This family can be found in [20] as well.
The exceptional graphs of Theorem 3 have at most seventeen vertices. They are described in [1], and we will not specify

them here. In [1] we also explain that Theorems 2 and 3 together improve the previously mentioned result of Faudree et al.
[6] and that Theorem 2 also improves the previously mentioned result of Gould and Jacobson [11].

2.2. Results of this paper

The proofs in [1] do not yield algorithms for constructing 2-factors that satisfy the upper bounds in Theorems 2 and 3. In
the remainder of this paper we will develop a new approach to these problems in order to establish polynomial algorithms
that construct 2-factors of claw-free graphs with minimum degree at least four. Using our results in [1] we show that
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