Contents lists available at ScienceDirect

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

JOURNAL OF ALGORITHMS

Computing sharp 2-factors in claw-free graphs $^{\bigstar, \bigstar \bigstar}$

Hajo Broersma, Daniël Paulusma*

Department of Computer Science, Durham University, DH1 3LE Durham, United Kingdom

ARTICLE INFO

Article history: Received 4 May 2009 Accepted 11 July 2009 Available online 22 July 2009

Keywords: Claw-free graph 2-factor Number of components Polynomial algorithm

ABSTRACT

In a previous paper we obtained an upper bound for the minimum number of components of a 2-factor in a claw-free graph. This bound is sharp in the sense that there exist infinitely many claw-free graphs for which the bound is tight. In this paper we extend these results by presenting a polynomial algorithm that constructs a 2-factor of a claw-free graph with minimum degree at least four whose number of components meets this bound. As a byproduct we show that the problem of obtaining a minimum 2-factor (if it exists) is polynomially solvable for a subclass of claw-free graphs. As another byproduct we give a short constructive proof for a result of Ryjáček, Saito and Schelp.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider 2-factors of claw-free graphs. Graph factors are well-studied. See [16] for a survey. Our motivation to study 2-factors goes back to the well-known NP-complete decision problem H-CYCLE (cf. [9]) in which the problem is to decide whether a given graph has a hamiltonian cycle, i.e., a connected 2-regular spanning subgraph. In the related problem 2-FACTOR the connectivity condition is dropped, hence the problem is to decide whether a given graph admits a 2-factor, i.e., a 2-regular spanning subgraph. This makes the problem considerably easier in the algorithmic sense: it is well known that 2-FACTOR can be solved in polynomial time by matching techniques, and a 2-factor can be constructed in polynomial time if the answer is YES (cf. [14]). Clearly, a hamiltonian cycle is a 2-factor consisting of one component, and the minimum number of components of a 2-factor can be seen as a measure for how far a graph is from being hamiltonian. So, from an algorithmic viewpoint a natural question is to consider the problem. Hence it makes sense to search for 2-factors with a reasonably small number of components if we aim for polynomial time algorithms. For this research we have restricted ourselves to the class of claw-free graphs. This is a rich class containing, e.g., the class of line graphs and the class of complements of triangle-free graphs. It is also a very well-studied graph class, both within structural graph theory and within algorithmic graph theory; see [7] for a survey. Furthermore, computing a 2-factor with a minimum number of components of claw-free graphs.

In [1] we already obtained an upper bound for the minimum number of components of a 2-factor in a claw-free graph. This bound is sharp in the sense that there exist infinitely many claw-free graphs for which the bound is tight; we will specify this later. When considering the related complexity problems, we soon realized that the proof methods used in [1] need to be extended in order to obtain a polynomial algorithm that constructs a corresponding 2-factor, e.g., a 2-factor whose number of components is at most our upper bound. In the present paper we present this polynomial time algorithm.

* Corresponding author.

^{*} This work has been supported by EPSRC (EP/D053633/1).

^{**} A preliminary and shortened version of this paper appeared in the Proceedings of the 33rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2008).

E-mail addresses: hajo.broersma@durham.ac.uk (H. Broersma), daniel.paulusma@durham.ac.uk (D. Paulusma).

^{1570-8667/\$ –} see front matter $\ @$ 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jda.2009.07.001

2. Terminology and background

We consider graphs that are finite, undirected and simple, i.e., without multiple edges and loops. For notation and terminology not defined in this paper we refer to [4].

Let G = (V(G), E(G)) be a graph of order |G| = |V(G)| = n and of size e(G) = |E(G)|. The neighbor set of a vertex x in G is denoted by $N_G(x) = \{y \in V(G) \mid xy \in E(G)\}$, and its cardinality by $d_G(x)$. We denote the minimum (vertex) degree of G by $\delta_G = \min\{d_G(x) \mid x \in V(G)\}$. If no confusion can arise we often omit the subscripts.

Let K_n denote the complete graph on n vertices. A graph F is called a 2-*factor* of a graph G if F is a 2-regular spanning subgraph of G, i.e., if F is a subgraph of G with V(F) = V(G) and $d_F(x) = 2$ for all $x \in V(F)$. A *claw-free* graph is a graph that does not contain an induced subgraph isomorphic to the four-vertex star $K_{1,3} = (\{u, a, b, c\}, \{ua, ub, uc\})$.

2.1. Known results

Several interesting problems are still open for claw-free graphs such as the conjecture of Matthews and Sumner [15] that every 4-connected claw-free graph is hamiltonian. However, there is quite a lot known on 2-factors in claw-free graphs, including some very recent results. Results of both Choudum and Paulraj [3] and Egawa and Ota [5] imply that every claw-free graph with $\delta \ge 4$ contains a 2-factor.

Theorem 1. (See [3,5].) A claw-free graph with $\delta \ge 4$ has a 2-factor.

We observe that every 4-connected claw-free graph has minimum degree at least four, and hence has a 2-factor. A 2-connected claw-free graph already has a 2-factor if $\delta = 3$ [20]. However, in general a claw-free graph with $\delta \leq 3$ does not have to contain a 2-factor. Examples are easily obtained.

Faudree et al. [6] showed that every claw-free graph with $\delta \ge 4$ has a 2-factor with at most $6n/(\delta + 2) - 1$ components. Gould and Jacobson [11] proved that, for every integer $k \ge 2$, every claw-free graph of order $n \ge 16k^3$ with $\delta \ge n/k$ has a 2-factor with at most k components. Fronček, Ryjáček and Skupień [8] showed that, for every integer $k \ge 4$, every claw-free graph G of order $n \ge 3k^2 - 3$ with $\delta \ge 3k - 4$ and $\sigma_k > n + k^2 - 4k + 7$ has a 2-factor with at most k - 1 components. Here σ_k denotes the minimum degree sum of any k mutually nonadjacent vertices.

If a graph *G* is claw-free, 2-connected and has $\delta \ge 4$, then *G* has a 2-factor with at most (n + 1)/4 components [13]. If a graph *G* is claw-free, 3-connected and has $\delta \ge 4$, then *G* has a 2-factor with at most 2n/15 components [13].

In [1] we considered claw-free graphs with $\delta \ge 4$. Our motivation for this is as follows. We first note that the number of components of a 2-factor in any graph on *n* vertices is obviously at most *n*/3. For claw-free graphs with $\delta = 2$ that have a 2-factor we cannot do better than this trivial upper bound. This is clear from considering a disjoint set of triangles (cycles on three vertices). For claw-free graphs with $\delta = 3$ that have a 2-factor, the upper bound *n*/3 on its number of components is also tight, as shown in [1]. Hence, in order to get a nontrivial result it is natural to consider claw-free graphs with $\delta \ge 4$. Our two main results in [1] provide answers to two open questions posed in [20].

Theorem 2. (See [1].) A claw-free graph G on n vertices with $\delta \ge 5$ has a 2-factor with at most $(n - 3)/(\delta - 1)$ components unless G is isomorphic to K_n .

Theorem 3. (See [1].) A claw-free graph G on n vertices with $\delta = 4$ has a 2-factor with at most (5n - 14)/18 components, unless G belongs to a finite class of exceptional graphs.

Both results are tight in the following sense. Let $f_2(G)$ denote the minimum number of components in a 2-factor of G. Then in [20], for every integer $d \ge 4$, an infinite family $\{F_i^d\}$ of claw-free graphs with $\delta(F_i^d) \ge d$ is given such that $f_2(F_i^d) > |F_i^d|/d \ge |F_i^d|/\delta(F_i^d)$. This shows we cannot replace $\delta - 1$ by δ in Theorem 2. The bound in Theorem 3 is tight in the following sense. There exists an infinite family $\{H_i\}$ of claw-free graphs with $\delta(H_i) = 4$ such that

$$\lim_{|H_i|\to\infty}\frac{f_2(H_i)}{|H_i|}=\frac{5}{18}.$$

This family can be found in [20] as well.

The exceptional graphs of Theorem 3 have at most seventeen vertices. They are described in [1], and we will not specify them here. In [1] we also explain that Theorems 2 and 3 together improve the previously mentioned result of Faudree et al. [6] and that Theorem 2 also improves the previously mentioned result of Gould and Jacobson [11].

2.2. Results of this paper

The proofs in [1] do not yield algorithms for constructing 2-factors that satisfy the upper bounds in Theorems 2 and 3. In the remainder of this paper we will develop a new approach to these problems in order to establish polynomial algorithms that construct 2-factors of claw-free graphs with minimum degree at least four. Using our results in [1] we show that

Download English Version:

https://daneshyari.com/en/article/431090

Download Persian Version:

https://daneshyari.com/article/431090

Daneshyari.com