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Abstract

A new parallel extended GCD algorithm is proposed. It matches the best existing parallel integer GCD algorithms of Sorenson
and Chor and Goldreich, since it can be achieved in O¢(n/logn) time using at most n I+e processors on CRCW PRAM. Sorenson
and Chor and Goldreich both use a modular approach which consider the least significant bits. By contrast, our algorithm only
deals with the leading bits of the integers u and v, with u > v. This approach is more suitable for extended GCD algorithms since
the coefficients of the extended version a and b, such that au + bv = gcd(u, v), are deeply linked with the order of magnitude of
the rational v/u and its continuants. Consequently, the computation of such coefficients is much easier.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of the Greatest Common Divisor (or GCD) of two integers is important for two major reasons. First
because it is widely included as a low operation in several arithmetic packages. On the other hand, despite its amazing
simplicity, the complexity of the GCD problem in parallel is still unknown. We do not know whether it belongs to the
NC class or if it is a P-complete problem.

The advent of practical parallel computers has caused the re-examination of many existing algorithms with the hope
of discovering a parallel implementation. In 1987, Kannan, Miller and Rudolph (KMR) [5] gave the first sub-linear
time parallel integer GCD algorithm on a common CRCW PRAM model. Their time bound was O (nloglogn/logn)
assuming there are n”(logn)? processors working in parallel, where 7 is the bit-length of the larger input. Since 1990,
Chor and Goldreich [1] have the fastest parallel GCD algorithm; it is based on the systolic array GCD algorithm of
Brent and Kung. The time complexity of their algorithm is O (n/logn) using only n'*¢ processors on a CRCW
PRAM. In 1994, Sorenson’s right- and left-shift k-ary algorithms [10] match Chor and Goldreich’s performance.

The extended version of parallel GCD algorithms is also discussed in Sorenson and Chor and Goldreich papers [1,
10]. However, they only give the main ideas. Moreover, the parallel extended GCD algorithm of Sorenson still can be
achieved in O (n/logn) time but it may require more than n!*¢ processors on CRCW PRAM (see [10], Section 7.2,
p. 141, lines 1, 2 and 3).

* A preliminary version of this paper was presented at ISSAC’01 Conference, London Ontario, Canada, ACM Press, 2001, pp. 303-308.
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Euclid’s algorithm is one of the simplest and most popular integer GCD algorithm. Its extended version called
Extended Euclidean Algorithm or EEA for short [7] is tightly linked with the continued fractions [3,7] and is important
for its multiple applications (cryptology, modular inversion, etc.). In [5], Kannan, Miller and Rudolph proposed a first
parallelization of EEA. Their algorithm was based on a reduction step which uses a non-trivial couple (a, b) of integers
lal < kv/u, |b| <2k, s.t. 0 <au —bv < u/k for a given parameter k > 0; therefore, at each step, the larger input u is
reduced by O (logk) bits.

However, one of the major drawbacks of their algorithm is the expensive cost of the computation (a, b). As a matter
of fact, in order to reach an O(1) time computation for their reduction step, more than O (n%log”n) processors are
needed to compare in pairs the O(n) numbers au — bv of 0(10g2 n) bits (see [5] for more details). This paper focus
on parallel extended GCD algorithms and the main results of the paper are summarized below:

e We propose a new reduction step which is easily obtained from the O (logn) first significant leading bits of the
inputs. This reduction does not introduce any spurious factors to remove afterwards.

e Based on this reduction step, new sequential and parallel GCD algorithms are designed. The parallel algorithm
matches the best known GCD algorithms: its time complexity is O, (n/logn) using only n'*¢ processors on a
CRCW PRAM, for any constant € > 0.

e We also design a new parallel extended GCD with this time bound, where the cofactors a an b such that au 4+ bv =
gcd(u, v), are easily computed.

e Our method can be generalized to all Lehmer-like algorithms and our algorithm may be modified to compute in
parallel the continuants of rationals.

This paper is an improved version of a paper presented in ISSAC’01 ACM conference, where we have added the
extended GCD versions of the sequential and parallel GCD algorithms.

In Section 2, we recall the basic reduction step used in Kannan, Miller and Rudolph’s algorithm [5]. In Section 3,
we define a new reduction which uses the same Lehmer idea [8]. Basically, with the O (log n) most significant bits of u
and v, we can easily find a couple (a, b) such that the associated reduction satisfies |au — bv| < 2v/k, with 1 <a <k,
for a given parameter k = O(n). A sequential as well as a parallel algorithms are designed to compute this reduction
and their correctness are discussed. Section 4 is devoted to the extended version of the reductions. A new parallel
extended GCD algorithm is described in Section 5. Complexity analysis is discussed in Section 6. We conclude with
some remarks in Section 7.

2. Basic reduction steps
2.1. Notation

Throughout this paper, we restrict ourselves to the set of non-negative integers. Let u and v be two such (non-
negative) integers, # and v are respectively n-bits and p-bits numbers with # > v. Let k be an integer parameter s.t.
k=2" withm > 2 and m = O(logn).

EFEA denotes the Extended Euclidean Algorithm. If many processors are in write concurrency then the Concurrent
Read and Concurrent Write model “CRCW” of PRAM is considered. There are many sub-models of CRCW PRAM
for solving the write concurrency. Most of the time the Common sub-model is considered, where each processor must
write the same value. However in order to allow the priority to the processor with the smallest index, one may choose
the Priority sub-model [6].

Most of serial integer GCD algorithms use one or several transformations (u#, v) —> (v, R(u, v)) which reduce the
size of current pairs (u, v), until a pair (', 0) is eventually reached. The last value ' = ged(u, v) is the result we want
to find. These transformations will be called Reductions if they satisfy the following two properties:

(P1)) 0L R@,v) <v.
(P) ged(v, R(u,v)) =aged(u,v), witha >0.

With (P1) and (P,), we are guaranteed that algorithms terminate and return the correct value ged(u, v), up to a
constant factor «, called spurious factor, which can easily be removed afterwards [4,10,12]. Examples of such basic
reductions are given in Table 1.
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