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Abstract

A minimum metric basis is a minimum set W of vertices of a graph G(V,E) such that for every pair of vertices u and v of G,
there exists a vertex w ∈ W with the condition that the length of a shortest path from u to w is different from the length of a shortest
path from v to w. The honeycomb and hexagonal networks are popular mesh-derived parallel architectures. Using the duality of
these networks we determine minimum metric bases for hexagonal and honeycomb networks.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction and background

Multiprocessor interconnection networks are often required to connect thousands of homogeneously replicated
processor-memory pairs, each of which is called a processing node. Instead of using a shared memory, all synchro-
nization and communication between processing nodes for program execution is often done via message passing.
Design and use of multiprocessor interconnection networks have recently drawn considerable attention due to the
availability of inexpensive, powerful microprocessors and memory chips [2].

It is known that there exist three regular plane tessellations, composed of the same kind of regular polygons:
triangular, square, and hexagonal. They are the basis for the design of direct interconnection networks with highly
competitive overall performance. Grid connected computers and tori (Figs. 1(a) and (b)) are based on regular square
tessellations, and are popular and well-known models for parallel processing.

Built recursively using the hexagon tessellation [13], honeycomb networks (Fig. 1(c)) are widely used in computer
graphics [7], cellular phone base stations [9], image processing, and in chemistry as the representation of benzenoid
hydrocarbons. Honeycomb networks are better in terms of degree, diameter, total number of links, cost and the bisec-
tion width than mesh connected planar graphs. Stojmenovic [13] has studied the topological properties of honeycomb
networks, routing in honeycomb networks and honeycomb torus networks. Parhami [10] gave a unified formulation
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Fig. 1. Graphs obtained by regular plane tessellations.

for the honeycomb and the diamond networks. The embedding of honeycomb networks into trees, hypercubes and
other networks was suggested as an open problem in [13].

The triangular tessellation is used to define Hexagonal network (Fig. 1(d)) and this is widely studied in [2]. An
addressing scheme for hexagonal networks, and its corresponding routing and broadcasting algorithms were proposed
by Chen et al. [2].

2. An overview of the paper

A metric basis for a graph G(V,E) is a set W ⊆ V such that for each pair of vertices u and v of V � W , there
is a vertex w ∈ W such that d(u,w) �= d(v,w). A minimum metric basis is a metric basis of minimum cardinality.
The cardinality of a minimum metric basis of G is called minimum metric dimension and is denoted by md(G); the
members of a minimum metric basis are called landmarks. The minimum metric dimension (MMD) problem is to find
a minimum metric basis.

The problem of finding the metric dimension of a graph was first studied by Harary and Melter [5]. Melter and
Tomescu [8] studied the metric dimension problem for grid graphs. Khuller et al. [6] describe the application of this
problem in the field of computer science and robotics. This problem has been studied for trees, multi-dimensional
grids [6], Petersen graphs [1], and Torus Networks [11]. Surprisingly, there is not much relevant work in the literature.
The algorithmic complexity status of MMD problem is not known to even simple graphs such as co-graphs, interval
graphs, Cayley graphs etc.

It is interesting to learn [6] that a graph has metric dimension 1 if and only if it is a path. The problem of computing
the metric dimension of trees is solved in linear time [6]. If G has p vertices then it is clear that 1 � md(G) � p − 1.
Also md(Kp) = p − 1, md(Cp) = 2, and md(Km,n) = m + n − 2, where Kp , Cp , and Km,n are the complete graph,
the cycle, and the complete bipartite graph respectively [5]. Garey and Johnson [3] proved that this problem is NP-
complete for general graphs by a reduction from 3-dimensional matching.

The aim of this paper is to find the minimum metric dimension of the honeycomb networks. Hexagonal network
HX(n) has a simple distance property like the two-dimensional grid. We first locate a minimum metric basis of HX(n).
By making use of the fact that honeycomb networks HC(n) and hexagonal networks HX(n) are dual networks, we
derive a minimum metric basis for HC(n). We prove that the minimum metric dimension of the honeycomb networks
of size n is 3.

3. Properties of honeycomb networks

Honeycomb networks can be built from hexagons in various ways. The honeycomb network HC(1) is a hexagon.
The honeycomb network HC(2) is obtained by adding six hexagons to the boundary edges of HC(1). Inductively,
honeycomb network HC(n) is obtained from HC(n − 1) by adding a layer of hexagons around the boundary of
HC(n − 1). For instance, Fig. 1(c) is HC(2). The parameter n of HC(n) is determined as the number of hexagons
between the centre and boundary of HC(n). The number of vertices and edges of HC(n) are 6n2 and 9n2 − 3n

respectively. The diameter is 4n − 1 [13].
In order to view the honeycomb HC(n) as a dual of the hexagonal network HX(n), let us recall the definition of

a dual graph. Let G be a planar graph. The dual of G, denoted by G�, is a graph whose vertex set is the set of faces
of G, where two vertices f � and g� in G� are joined by an edge e� if the faces f and g are separated by the edge e.
Clearly the number of vertices of G� is equal to the number of faces of G and the number of edges of G� is equal to
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