Available online at www.sciencedirect.com

. . JOURNAL OF
ScienceDirect DISCRETE

ALGORITHMS

www.elsevier.com/locate/jda

Journal of Discrete Algorithms 6 (2008) 37-50

Fast pattern-matching on indeterminate strings ™

Jan Holub?, W.F. Smyth *¢* Shu Wang "

& Department of Computer Science & Engineering, Czech Technical University, Karlovo ndmésti 13, Praha 2, CZ-121 35, Czech Republic
b Algorithms Research Group, Department of Computing & Software, McMaster University, Hamilton, ON LSS 4K1, Canada
¢ Department of Computing, Curtin University, GPO Box U1987, Perth, WA 6845, Australia

Received 5 December 2005; received in revised form 28 September 2006; accepted 3 October 2006
Available online 6 December 2006

Abstract

In a string x on an alphabet X, a position i is said to be indeterminate iff x[i] may be any one of a specified subset
{A1,22,... A5} of X, 2< j<|X|. A string x containing indeterminate positions is therefore also said to be indeterminate.
Indeterminate strings can arise in DNA and amino acid sequences as well as in cryptological applications and the analysis of musi-
cal texts. In this paper we describe fast algorithms for finding all occurrences of a pattern p = p[1..m] in a given text x = x[1..n],
where either or both of p and x can be indeterminate. Our algorithms are based on the Sunday variant of the Boyer—Moore pattern-
matching algorithm, one of the fastest exact pattern-matching algorithms known. The methodology we describe applies more
generally to all variants of Boyer—Moore (such as Horspool’s, for example) that depend only on calculation of the § (“rightmost
shift”) array: our method therefore assumes that X' is indexed (essentially, an integer alphabet), a requirement normally satisfied in
practice.
© 2006 Elsevier B.V. All rights reserved.

Keywords: String; Word; Algorithm; Pattern-matching; Indeterminate; Approximate; Boyer—Moore; Sunday

1. Introduction

Driven by applications to computational biology, cryptanalysis, musicology, and other areas, there has been recent
interest in strings that contain letters that are not uniquely defined. In computational biology, DNA sequences may still
be considered to match each other if letter A (respectively, C) is juxtaposed with letter T’ (respectively, G); analogous
juxtapositions may count as matches in protein sequences, and in fact the FASTA format [6] specifically includes
indeterminate letters. In cryptanalysis, so far undecoded symbols may be known to match one of a specific set of
letters in the alphabet. In music, single notes may match chords, or notes separated by an octave may match.

* Supported in part by grants from the Natural Sciences & Engineering Research Council of Canada, the Ministry of Education, Youth and
Sports of Czech Republic and Czech Science Foundation. The authors express their gratitude to three anonymous referees, whose comments have
materially improved the quality of this paper.

* Corresponding author.

E-mail addresses: holub@fel.cvut.cz (J. Holub), smyth@mcmaster.ca, smyth@computing.edu.au (W.F. Smyth), shuw @mcmaster.ca
(S. Wang).
URL: http://www.cas.mcmaster.ca/cas/research/algorithms.htm (W.F. Smyth).

1570-8667/$ — see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2006.10.003

http://www.elsevier.com/locate/jda
mailto:holub@fel.cvut.cz
mailto:smyth@mcmaster.ca
mailto:smyth@computing.edu.au
mailto:shuw@mcmaster.ca
http://www.cas.mcmaster.ca/cas/research/algorithms.htm
http://dx.doi.org/10.1016/j.jda.2006.10.003

38 J. Holub et al. / Journal of Discrete Algorithms 6 (2008) 37-50

We refer to a letter x[i] in x that is not uniquely defined as indeterminate, and we use the same term to refer to the
position i at which it occurs. A string x that may possibly contain indeterminate letters is also called indeterminate.
The simplest form of indeterminate string is one in which indeterminate positions can contain only a don’t-care
letter—that is, a letter x that matches any letter in the alphabet X' on which x is defined. In 1974 an algorithm was
described [7] for computing all occurrences of a pattern p in a text string x, where both p and x are defined on
the alphabet X' U {x}, but although efficient in theory, the algorithm was not useful in practice. In 1987 [1] for the
first time considered pattern-matching on indeterminate strings in our sense (“‘generalized pattern-matching’), but the
algorithms again were not efficient in practice. In 1992 the bit-mapping technique for pattern-matching (often called
the ShiftOr method) was reinvented [2,5,26] and applied (among several other applications) to finding matches for an
indeterminate pattern p in a string x. Since that time, the resulting agrep utility [25] has, with its variants [20-22],
been virtually the only practical algorithm available for indeterminate pattern-matching.

Recently, an easily-implemented average-case O(n) time algorithm was proposed [15] for computing all the periods
of every prefix of a string x = x[1..n] on X' U {x}. In [11] this work was extended in two ways: first, by distinguish-
ing two distinct forms of indeterminate match (“quantum” and “deterministic”’) on X' U {x}; second, by refining the
definition of indeterminate letters so that they can be restricted to matching only with specified subsets of X' rather
than with every letter of X' (a case already considered in agrep). (Roughly speaking, a “quantum” match allows an
indeterminate letter to match two or more distinct letters during a single matching process; a “determinate” match
restricts each indeterminate letter to a single match.)

In this paper we present efficient practical algorithms for pattern-matching on indeterminate strings, where inde-
terminacy may be interpreted in any of the ways described in [11]. Since difficulties arise in efficiently implementing
pattern-matching algorithms on indeterminate strings that are based on some form of period [16,19], we do not there-
fore pursue the ideas of [11,15], but turn rather to the variants of the Boyer—Moore algorithm [3], such as [12,24], that
require only knowledge of the rightmost occurrence of each letter in the pattern p (the § array). As documented in
[14,17] and more recently in [8,18], these algorithms are in fact among the fastest available for exact pattern-matching
on determinate strings, and as we shall see, these benefits extend also to indeterminate strings.

We begin with an alphabet ¥ = {11, A2, ..., At} that is finite and moreover, as required by all Boyer—Moore-like
algorithms, indexed—that is, with the property that each A;, 1 < j <k, can be used as an index (or position) in an
array, say 6 = 8[A1..Ax], allowing 8[A ;] to be accessed in constant time. Thus without loss of generality we suppose
that A; = j, so that ¥’ = {1, 2, ..., k} is an integer alphabet.

In order to model indeterminate letters, we define an extended alphabet

X ={1,2,....kk+1,....K},

where to every j € k + 1..K we associate a unique nonempty subset X'; of X, |X';| > 2; for j € 1..k it is convenient
to define X'; = {j}. (Throughout, for integers i, j > i, we use the notation i..j to denote the range of integers i, i +
1,...,j.) Thus, in general, K —k € 0..2F — k — 1. Note that if all letters are determinate, then K =k and ¥’ = X;
while if only the don’t-care letter occurs, then K =k + 1 and X'x = X'. It should normally be true in practice that
K — k is “not too large”—perhaps

K—k<d (D

for some small fixed integer d. Note that (1) will always be satisfied for k = 4 (the DNA alphabet) if we merely choose
d=11.
Our problem in its most general form then becomes the following:

Compute all occurrences of a pattern p = p[1..m] in a text string x = x[1..n], where both p and x are defined on
%', and where every j € 1..K matches any element of X;.

In fact we consider three pattern-matching models in increasing order of sophistication (and processing time require-
ments), of which only the third is the general form:

(M1) The only indeterminate letter is the don’t-care *, whose occurrences may be in either p or x, or both.
(M2) Arbitrary indeterminate letters can occur, but only in p (like agrep).
(M3) Indeterminate letters can occur in both p and x.

Download English Version:

https://daneshyari.com/en/article/431134

Download Persian Version:

https://daneshyari.com/article/431134

Daneshyari.com

https://daneshyari.com/en/article/431134
https://daneshyari.com/article/431134
https://daneshyari.com

