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• Covariates  derived  from  decision  and learning  models  identify  common  neural  regions.
• Feedback  provides  performance  information  monitored  by  a prefrontal  network.
• Choice-outcome  learning  improves  decision  evidence  via  the  basal  ganglia.
• Choice-outcome  learning  drives  a  shift  toward  stimulus-driven  decision-making.

a  r  t i  c  l  e  i  n  f  o

Article history:
Received 8 August 2016
Accepted 10 August 2016
Available online 11 August 2016

Keywords:
Memory
Feedback
Reinforcement learning
Drift-diffusion model
Basal ganglia
Control

a  b  s  t  r  a  c  t

Feedback  about  our  choices  is a crucial  part  of how  we  gather  information  and  learn  from  our  envi-
ronment.  It  provides  key  information  about  decision  experiences  that can  be used to optimize  future
choices.  However,  our  understanding  of  the  processes  through  which  feedback  translates  into  improved
decision-making  is  lacking.  Using  neuroimaging  (fMRI) and  cognitive  models  of  decision-making  and
learning,  we  examined  the  influence  of feedback  on multiple  aspects  of decision  processes  across  learn-
ing.  Subjects  learned  correct  choices  to a set  of  50 word  pairs  across  eight  repetitions  of a  concurrent
discrimination  task.  Behavioral  measures  were  then  analyzed  with  both  a drift-diffusion  model  and  a
reinforcement  learning  model.  Parameter  values  from  each  were  then  used  as  fMRI  regressors  to  iden-
tify regions  whose  activity  fluctuates  with  specific  cognitive  processes  described  by  the  models.  The
patterns  of  intersecting  neural  effects  across  models  support  two  main  inferences  about  the  influence
of  feedback  on  decision-making.  First, frontal,  anterior  insular,  fusiform,  and  caudate  nucleus  regions
behave  like  performance  monitors,  reflecting  errors  in  performance  predictions  that  signal  the  need  for
changes  in  control  over  decision-making.  Second,  temporoparietal,  supplementary  motor,  and  putamen
regions  behave  like  mnemonic  storage  sites,  reflecting  differences  in learned  item  values  that  inform
optimal  decision  choices.  As  information  about  optimal  choices  is accrued,  these  neural  systems  dynam-
ically  adjust,  likely  shifting  the  burden  of  decision  processing  from  controlled  performance  monitoring
to  bottom-up,  stimulus-driven  choice  selection.  Collectively,  the  results  provide  a detailed  perspective
on  the fundamental  ability  to  use past  experiences  to  improve  future  decisions.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Decision-making is fundamentally influenced by past experi-
ences. On a daily basis, we face numerous decisions requiring us
to draw upon learned information to optimize our choice selec-
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tion. This underlying information is acquired through experience,
often by using feedback to assess the quality of decisions. Feed-
back thus provides a critical link between decision outcomes and
mnemonic information that influences future choices. However,
the processes and neural substrates that translate feedback into
improved decision-making remain poorly understood.

The present study investigated how the neural systems that pro-
cess feedback can influence subsequent decision-making behavior.
Specifically, we used computational models of learning and choice
selection to investigate how feedback influences decision-making
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in the context of repeated choice experiences with deterministic
outcomes. In such contexts, feedback from a single choice can pro-
vide sufficient information to optimize future decisions involving
the same choice. For example, if a student guesses that Harris-
burg is the capital of Pennsylvania and is then told this answer is
correct, the student gains valuable information that may  help for
later choices. In practice, however, the retrieval of learned infor-
mation can be faulty, so repetition is typically required to attain
optimum performance. These considerations, wherein outcome
feedback and choice selection are conceptually linked, suggest that
feedback processing and decision-making share a common set
of neural substrates. We  sought to characterize these substrates
using functional magnetic resonance imaging (fMRI) combined
with model-informed data analysis.

This work is guided by a literature on perceptual decisions and
the impact of noisy sensory input, such as in tasks wherein subjects
decide whether a noisy image depicts a face or a house [33,21,80]
or whether a cloud of dots with partial motion coherence is drift-
ing leftward or rightward [70]. These perceptual decision processes
are well characterized by sequential sampling models, such as the
drift-diffusion model [59,61]. In this class of model, a decision-
variable accumulates evidence for or against a choice—when this
value reaches a threshold, a decision is executed. As one makes a
perceptual choice, competing sensory evidence is evaluated until
a stopping criterion is reached. This process has been concep-
tually mapped onto physiological measures, wherein the firing
rate of neurons modulates in a manner analogous to parameters
within drift-diffusion models [31,70,60,64,27]. Parallel neuroimag-
ing work in humans has identified fMRI signatures of comparable
processes [54,55,90,39,40] and connected these signatures directly
to drift-diffusion parameters [7,80]. Thus, the processes encapsu-
lated by drift-diffusion models are neurally plausible and carry
specific cognitive interpretations for underlying neural correlates
based on past work.

Importantly, under the drift-diffusion framework, the source of
information to be evaluated for a decision can derive from any of a
number of systems (e.g., sensory, memory, etc.). Since the underly-
ing information being evaluated is the distinguishing characteristic
of mnemonic versus perceptual decisions, the predictions of drift-
diffusion models should hold for decisions wherein evidence is
based on information gathered from experience. To support this
extension, Yang and Shadlen [95] trained monkeys to associate
shapes with reward probabilities, and using a modified weather
prediction task, linked changes in the firing rates of parietal neurons
to the integration of probabilistic decision evidence acquired from
training. In humans, Wheeler and colleagues [91] demonstrated
similar modulations of fMRI activity in occipital, temporal, and
parietal regions that corresponded to sequences of presented prob-
abilistic evidence. In both cases, decision evidence derived directly
from arbitrary stimulus-response associations acquired through
learning, supporting the link between drift-diffusion principles and
decision-making in non-perceptual domains. On top of this, Frank
et al. [23] offered a direct connection by showing that changes
in estimates of outcome reward (via probabilistic reinforcement
learning) correlated with changes in model-estimated decision
thresholds and that this relationship could be traced to activity in
thalamic and medial frontal regions. The study’s approach, how-
ever, focused on specific cortico-striatal connections and did not
directly consider the broader influence of feedback on decision pro-
cesses or a feedback-based learning framework. Taken together,
key findings from simple perceptual decisions seem to translate to
the mnemonic domain, but the larger intersection between mem-
ory and decision-making remains unclear.

One fundamental unknown is how feedback influences
decision-making processes and improves later behavior. This is
especially applicable for deterministic or quasi-deterministic deci-

sions, where the available choices always or nearly always produce
the same outcome. Tricomi and Fiez [82,83] made progress on this
front by examining decision-making across multiple rounds of a
paired-associate learning task. They found that feedback influenced
both explicit and implicit memory, which together seemed to drive
learning and subsequent decision-making. However, the Tricomi
and Fiez work did not consider model-based connections between
behavioral and neuroimaging data, and therefore could not draw
inferences in the context of computationally defined feedback and
decision-making processes.

The current study takes this next step by investigating the
influence of feedback on decision processes during a concurrent
discrimination learning task. In this task, subjects are presented
with a pair of items, wherein one is arbitrarily designated as the
correct choice, and the other as incorrect. After selecting an item,
subjects see feedback that indicates the value of the choice (i.e., a
correct or incorrect choice). With repeated experience of the items,
subjects accrue mnemonic information and gain proficiency in
making correct choices. At the same time, subjects could also accrue
all of the mnemonic information necessary for perfect performance
from a single decision experience. Thus, concurrent discrimina-
tion offers a meaningful framework with which to study how the
encoding and accrual of past experiences translate into improved
decision-making.

To capture these feedback-based learning influences, we
implemented a reinforcement learning model alongside the drift-
diffusion model. Reinforcement learning describes how a history of
outcomes, built up for individual choices, creates a prediction of an
outcome’s value that can be used to drive choice selection. Errors
between the expected versus observed outcomes (reward predic-
tion error, RPE) are used to adjust the expected value of a choice (EV)
toward a more accurate representation of the actual result. Thus,
measures derived from reinforcement learning can explain aspects
of feedback processing in terms of a learning signal (RPE) and the
consequence of that learning (EV). Neurally, these signals have been
shown to be distinct and separable: in the context of probabilistic
learning, each signal tends to localize to different areas, such as
sub-regions of the basal ganglia and orbitofrontal cortex [66,67].
In the case of deterministic learning, such as concurrent discrimi-
nation, reinforcement learning should be equally applicable. In an
extreme case, where mnemonic encoding and retrieval processes
are entirely noise-free, the RPE signal from an initial choice should
drive sufficient learning to ensure optimal choice selection for a
future episode. Reinforcement learning can capture this type of
single-trial learning, such that the initial RPE updates the EV to
ensure future accuracy. While deterministic learning can be plausi-
bly captured by reinforcement learning models, the extent to which
estimates of RPE and EV exhibit the same neural localization and
dissociations compared to probabilistic choice learning remains
an open question. Regardless, like the drift-diffusion model, rein-
forcement learning has a set of distinct cognitive predictions that
correspond to a set of distinct neural correlates.

Thus, the two  models each describe aspects of learning and
decision-making that, when combined, could offer unique lever-
age for understanding how feedback influences decision-making
behavior, and how this influence is implemented neurally. The
drift-diffusion model describes how information is evaluated to
drive decision-making, whereas reinforcement learning describes
how feedback shapes that information. As such, each model can
distinguish between performance-related effects (e.g., boundary
in the diffusion model and RPE in reinforcement learning) and
evidence-related effects (e.g., drift-rate in the diffusion model and
EV in reinforcement learning). When applied to neural data, these
two models can be leveraged to identify regions associated with
performance and evidence monitoring, versus regions that provide
evidence to decision-making processes.
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