
The Journal of Logic and Algebraic Programming 81 (2012) 46–69

Contents lists available at SciVerse ScienceDirect

The Journal of Logic and Algebraic Programming

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / j l a p

Extended beam search for non-exhaustive state space analysis

A.J. Wijs a,∗, M. Torabi Dashti b

a
Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

b
ETH Zürich, CNB F 109, Universitätstrasse 6, 8092 Zürich, Switzerland

A R T I C L E I N F O A B S T R A C T

Article history:

Available online 5 September 2011

Keywords:

Model checking

Formal analysis

State space generation

Heuristics

Guided traversal

State space explosion is a major problem in both qualitative and quantitative model check-

ing. This article focuses on using beam search, a heuristic search algorithm, for pruning

weighted state spaces while generating. The original beam search is adapted to the state

space generation setting and two new variants, motivated by practical case studies, are de-

vised. These beam searches have been implemented in the μCRL toolset and applied on

several case studies reported in the article.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

State space explosion is a major problem in model checking. To mitigate this problem, over the years a number of

techniques have emerged to prune, or postpone generating, parts of the state space that are not, or do not seem, essential,

given the verification task at hand. Prominent examples of pruning and postponing techniques are partial order reduction

(Por) [13,49], and directedmodel checking (Dmc) [5,19], respectively. Intuitively, Por algorithms guarantee that no essential

information is lost due to pruning.Dmc algorithms, however, use heuristics to guide the generation, so that the states which

are most relevant to the verification task are generated first. Both Dmc and Por are in line with the core idea of model

checking when studying qualitative properties, i.e. either to exhaustively search the complete state space to find any corner

case bug, or guarantee that the pruned states are immaterial for the verification task.

This article, in contrast, focuses mainly on heuristic pruning methods which are applicable to verification of quantitative

properties of systems [11], e.g. finding an optimal schedule for an industrial batch processor, calculating the probability of

a frame loss for a network device, and determining the minimal time needed to prepare a product on an assembly line.

When using model checkers for quantitative analyses of systems often (1) solutions (represented by paths from an initial

state to a so-called goal state) to the problem at hand densely populate the state space, and (2) near-optimal answers are

sufficiently acceptable in practice. Remark that these two features are not common in qualitative analysis problems, where

goal states usually denote corner case bugs, and are therefore sparsely present in the state space, andmoreover, definitive an-

swers are needed. Therefore, quantitative analyses allow pruning techniques which are not necessarily useful for qualitative

analyses.

In particular, we investigate how beam search (Bs) can be used for weighted state space generation, to solve quantitative

problems. Bs is a heuristic search method for combinatorial optimisation problems, which has extensively been studied in

artificial intelligence and operations research, among others by [42,55,26,61,58,15]. Conceptually, Bs is similar to breadth-

first search (Bfs), as it progresses level by level through a highly structured search tree containing all possible solutions to a

problem. Bs, however, does not explore all the encountered nodes. At each level, all the nodes are evaluated using a heuristic

cost (or priority) function, but only a fixed number of them is selected for further examination. This aggressive pruning

∗ Corresponding author.

E-mail addresses: A.J.Wijs@tue.nl (A.J. Wijs), mohammad.torabi@inf.ethz.ch (M. Torabi Dashti).

1567-8326/$ - see front matter © 2011 Elsevier Inc. All rights reserved.

doi:10.1016/j.jlap.2011.06.002

http://dx.doi.org/10.1016/j.jlap.2011.06.002
http://www.sciencedirect.com/science/journal/15678326
www.elsevier.com/locate/jlap
http://dx.doi.org/10.1016/j.jlap.2011.06.002


A.J. Wijs, M. Torabi Dashti / Journal of Logic and Algebraic Programming 81 (2012) 46–69 47

heavily decreases the generation time and memory consumption, but may in general miss essential parts of the tree for the

problem at hand, since wrong decisions can be made while pruning. Therefore, Bs has so far been mainly used in search

trees with a high density of goal nodes. Scheduling tasks, for instance, have been perfect targets for using Bs: the goal is to

optimally schedule a certain number of jobs and resources, while near-optimal schedules, which densely populate the tree,

are in practice acceptable.

Using Bs in state space generation is an attempt towards integrating functional analysis, to which state spaces are usually

subjected, and quantitative analysis. In the current article, we motivate and thoroughly discuss adapting two Bs techniques

called detailed (Dbs) and priority (Pbs) Bs to deal with arbitrary structures of state spaces. We remark that model checkers

(e.g. Spin [34], Uppaal [4], the μCRL toolset [8], the mCRL2 toolset [31], the LTSmin toolset [9], and the Cadp toolbox [27])

usually have very expressive input languages. Therefore, Bs must be adapted to deal with more general state spaces, com-

pared to simple search trees to which Bs has been traditionally applied. Next, we extend the classic Bss in two directions.

First, we propose flexible Bs, which, broadly speaking, does not stick to a fixed number of states to be selected at each

search level. This partially mitigates the problem of determining this exact fixed number in advance. Second, we intro-

duce the notion of synchronised Bs, which aims at separating the heuristic pruning phase from the underlying exploration

strategy.

We have implemented the aforementioned variants in the μCRL [32] state space generation toolset [8]. The process

algebraic language μCRL, an extension of ACP with abstract data types, comes with stable and mature tool support. A

μCRL specification consists of data type declarations and process behaviour definitions, where processes and actions can

be parametrised with data. Data are typed in μCRL and types can have recursive definitions. Each non-empty data type

has constructors and possibly non-constructors associated to it. The semantics of non-constructors is given by means of

equations. The specification of a component is a guarded recursive equation that is constructed from a finite set of action

labels, process algebraic operators and recursion variables. The μCRL toolset can be used for automatically generating state

spaces from μCRL specifications. The Cadp toolbox [27] can then be used for verifying regular alternation-free μ-calculus

properties of the resulting state spaces. Augmenting the μCRL toolset with Bs therefore enables us to perform advanced

qualitative model checking in the same framework where we perform our quantitative analysis.

Experimental results for several scheduling case studies are reported. It should be stressed that, even though this article

focusses on applying Bs to solve scheduling problems, the techniques described here are also applicable for other forms of

quantitative model checking, such as real-time and stochastic model checking. We briefly discuss this in Section 10.3.

Road map: First, in Section 2, we present the basic notions necessary for understanding this article. We describe the general

search algorithm called best-first search and present a specific instance called uniform-cost search. After that, we propose a

newextension of best-first search, calledmulti-phase best-first search, in Section 3. Two classicBss for highly structured trees

are described in Section 4; here, we temporarily deviate from the model checking setting, and present Bs in its ‘traditional’

setting. Section 5 deals with the adaptation of two existing variants of Bs to the state space generation setting. There we

also propose our extensions to the Bs algorithms. After that we focus in Section 6 on the implementation of some of these

adapted and extendedBs algorithms in theμCRL toolset. Related issues such asmemorymanagement and selecting heuristic

functions are discussed in Sections 7 and 8, respectively. After that, experimental results for several scheduling problems

are discussed in Section 9. Section 10 presents our related work, including other uses of Bs, connections with other search

algorithms, and other possible application areas for Bs. Finally, Section 11 concludes the article.

2. Searching through weighted state spaces

Definition 1 (Weighted state space). A weighted state space or weighted labelled transition system (Wlts) is a quintuple

M = (S , A , C , T , I ), where S is a set of states, I ⊆ S is a set of initial states, A is a finite set of action labels,

C : A → K, withK a cost domain, is a total function assigning costs to action labels, and T ⊆ S ×A ×S is the transition

relation.

A state s′ is called reachable from state s iff s→∗ s′, where→∗ is the reflexive transitive closure of
�−→ for any � ∈ A .

When checking a reachability property, one searches for an s ∈ G , where G ⊆ S is a given set of goal states, such that there

exists an s′ ∈ I for which s′ →∗ s.
The set of enabled transitions in state s of Wlts M is defined as enM(s) = {t ∈ T | ∃s′ ∈ S , � ∈ A . t = s

�−→ s′}.
For T ⊆ T , we define nxtM(s, T) = {s′ ∈ S | ∃� ∈ A . s

�−→ s′ ∈ T}. Therefore, nxtM(s, enM(s)) is the set of successor

states of s. Whenever enM(s) = ∅, we call s a deadlock state. Finally, in the state space setting, an action may have several

data parameters, which are considered to be included in the action label �. These parameters may be defined over infinite

domains, but as we require A to be finite, the sets of concrete values for the parameters, as they appear in M , should be

finite as well. Whenever we compare action labels, for instance � = a, we ignore the parameters. We are aware of this

discrepancy, but trying to avoid it would lead to unnecessary complications.

Given a cost domain K, in a Wlts, every action in A is associated with a cost c ∈ K. Such a totally ordered cost domain

can be a subset of any known set of numbers, e.g.K ⊆ N orK ⊆ R. We do not consider negative cost values here. Note that

a standard Lts can be seen as aWltswhere all � ∈ A have the same associated cost.



Download	English	Version:

https://daneshyari.com/en/article/431205

Download	Persian	Version:

https://daneshyari.com/article/431205

Daneshyari.com

https://daneshyari.com/en/article/431205
https://daneshyari.com/article/431205
https://daneshyari.com/

