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h  i g  h  l  i  g  h  t  s

• Opioid-addicted  individuals,  and  controls,  performed  a reward-  and  punishment-learning  task.
• Computational  (reinforcement  learning)  models  were  applied  to describe  individuals’  performance.
• Behavioral  results  shows  opioid-addicted  individuals  performed  as well  as  controls  on the  task.
• Computational  modeling  suggested  subtle  differences  in  how  the  two groups  made  decisions.
• Specifically,  the addicted  group  was  more  likely  to  “chase”  reward  when  expectancies  were  violated.
• A  bias  to  pursue  short-term  reward,  rather  than  long-term  gain,  may  contribute  to  opioid  addiction.
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a  b  s  t  r  a  c  t

Addiction  is  the  continuation  of  a habit  in  spite  of negative  consequences.  A  vast  literature  gives evidence
that  this  poor  decision-making  behavior  in  individuals  addicted  to  drugs  also  generalizes  to laboratory
decision  making  tasks,  suggesting  that the  impairment  in  decision-making  is  not  limited  to decisions
about  taking  drugs.  In the current  experiment,  opioid-addicted  individuals  and  matched  controls  with
no history  of  illicit  drug  use  were  administered  a  probabilistic  classification  task  that  embeds  both  reward-
based and  punishment-based  learning  trials,  and  a computational  model  of  decision  making  was  applied
to  understand  the mechanisms  describing  individuals’  performance  on  the  task.  Although  behavioral
results  showed  that  opioid-addicted  individuals  performed  as  well  as controls  on both  reward-  and
punishment-based  learning,  the  modeling  results  suggested  subtle  differences  in how  decisions  were
made  between  the  two  groups.  Specifically,  the  opioid-addicted  group  showed  decreased  tendency  to
repeat prior  responses,  meaning  that they  were  more  likely  to “chase  reward”  when  expectancies  were
violated,  whereas  controls  were  more  likely  to stick  with  a previously-successful  response  rule,  despite
occasional  expectancy  violations.  This  tendency  to  chase  short-term  reward,  potentially  at  the  expense
of developing  rules  that  maximize  reward  over  the  long  term,  may  be a contributing  factor  to  opioid
addiction.  Further  work  is  indicated  to  better  understand  whether  this  tendency  arises  as  a  result  of
brain changes  in the  wake  of  continued  opioid  use/abuse,  or might  be a pre-existing  factor  that  may
contribute  to risk  for  addiction.
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1. Introduction

Addiction is a special case of impaired decision-making in
which individuals continue to seek and use addictive substances
despite negative consequences. In the extreme, these consequences
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can include loss of income, family and friends, as well as ille-
gal activity in acquiring and using illicit substances. Addiction
can involve physical dependence, but also psychological depen-
dence, as individuals continue to pursue and use drugs, even when
they are well aware of these negative consequences and wish
to stop the drug use. Thus, an important component of addic-
tion is an abnormality in decision-making, and specifically how
rewarding and punishing feedback are used to optimize behavior.
One interpretation is that addicted individuals “chase” short-term
reward, which may  include both the acute drug effects as well
as relief from withdrawal symptoms, at the expense of develop-
ing behavioral patterns that maximize reward over a longer time
window.

Of particular societal concern are the highly-addictive opi-
oid drugs including heroin, morphine, and a number of
other medically-prescribed pain-killers such as oxycodone and
hydrocodone. Due to an increasing use of opioids for pain man-
agement, accidental addiction leading to opioid abuse is currently
a major issue. It is estimated that over 2 million people in the US
alone have substance abuse disorders related to prescription opi-
oid drugs, and abuse of these drugs may  lead to abuse of heroin
because it is cheaper and easier to obtain than prescription opioids
[26]. Opioid addiction is notoriously difficult to overcome, even
when the addicted individual strongly desires to stop using the
drug; for example, one study reported 90% relapse rate for opioid-
addicted individuals having undergone detoxification treatment
[37]. An alternate and widely-preferred approach is maintenance
therapy involving medically-supervised use of opioids such as
methadone and buprenorphine; however, a recent review of out-
comes following buprenorphine maintenance therapy reported
that, in every study examined, 1 month following discontinuation
of treatment rates of relapse to illicit opioid use exceeded 50% [4].
Given this bleak outlook, it is of great importance to better under-
stand the mechanisms underlying impaired decision-making in
opioid-addicted individuals, in order to be able to develop more
effective therapies to promote and support these individuals in
overcoming their dependence.

In previous work, we and others have used probabilis-
tic reward-and-punishment learning tasks to better understand
decision-making impairments in various psychiatric and neurolog-
ical patient groups [5,7,13,16,25,28,29]. For example, a widely-used
paradigm interleaves reward-learning trials and punishment-
learning trials [5]. On the reward-learning trials, correct responses
are often (but not always) rewarded with point gain, while incor-
rect responses trigger no feedback; on punishment-learning trials,
incorrect responses are often (but not always) punished with point
loss, while correct responses trigger no feedback. Thus, the task
allows evaluation of the relative speed at which individuals learn
to obtain reward vs. avoid punishment; it also allows investiga-
tion of how individuals deal with violation of expectancies (since
the probabilistic nature of the task means that a response which
is usually optimal may  nevertheless be incorrect on any specific
trial).

A number of prior studies have applied this task to patient
populations. For example, Parkinson’s disease (PD) involves pro-
gressive death of dopamine-producing neurons in the ventral
striatum. Never-medicated PD patients perform similarly to
matched controls on punishment-learning trials but are severely
impaired at reward-learning trials, consistent with the idea that
dopamine plays a key role in reward signaling; however, PD
patients treated with dopaminergic drugs showed the reverse
pattern: remediated reward learning but impaired punishment
learning [5]. These results were recently replicated in a sec-
ond study, which also considered a third group: PD patients
who develop impulse control disorders (ICD) following treat-
ment with dopaminergic medication [28]. Behaviorally, the PD–ICD

group showed facilitated reward learning but impaired punish-
ment learning. Other studies with this and similar tasks have
documented facilitated reward-based learning in male veter-
ans with severe post-traumatic stress disorder (PTSD) symptoms
[25], facilitated reward and punishment learning in individ-
uals with anxiety vulnerability [35], and correlation between
reward-based (but not punishment-based) learning and negative
(but not positive) symptoms in schizophrenia [14,38]. Thus, this
type of task is able to dissociate qualitative patterns of behav-
ior among different patient populations, presumably reflecting
different nodes of dysfunction in the brain for the different dis-
orders.

One way  of understanding the mechanisms behind reward-
and-punishment learning in these various groups is through
reinforcement learning (RL) theories. RL theories suggest that
actions are chosen to best maximize rewards (or reward value) in
a given state [2,41,48]. RL models typically incorporate a concept
of prediction error (PE), calculated by comparing actual outcomes
(e.g. reward or punishment) against expected outcomes. One class
of RL models, the actor-critic model [2,8], separates this prediction
error from the action selection process. While one module (“critic”)
learns to calculate PE, and uses it to predict the value of the current
environmental state, a second module (“actor”) uses the PE to learn
to select between competing possible actions. Specific parameters
in the model can determine the rate at which an individual learns
from rewarding or punishing feedback, the explore/exploit tradeoff
(the degree to which an individual chooses previously-successful
responses vs. occasionally trying new ones) and recency bias (the
degree to which an individual simply repeats the most recent prior
responses, regardless of past success).

Numerous studies suggest that the actor-critic model may
provide a reasonable explanation of feedback-based learning in
the brain. For example, in animals DA neurons respond especially
to unexpected rewards [17,32], as well as to stimuli that signal
upcoming or predicted reward [11] and reduce firing in response
to omission of expected reward [17]. Similarly, in humans, healthy
young males who underwent functional neuroimaging while per-
forming the reward-and-punishment-learning task [5] showed
activity in the dorsal caudate that was  consistent with PE calcu-
lations [22]. Further, when several RL models were applied to data
obtained from PD patients with and without ICDs, described above
[28], the data were best described by an actor-critic model that
allowed separate learning rates for reward and punishment tri-
als in both the actor and the critic, a dissociation that appears to
have plausible neural substrates [12,30]. Results from this model
suggested that, while PD is associated with reduced reward-based
learning in the actor, ICDs are associated with reduced learning in
the critic, resulting in an underestimation of adverse consequences
associated with stimuli that predict punishment.

Here, we  ask whether the same evaluation of probabilis-
tic reward-and-punishment learning, paired with RL modeling
using an actor-critic model, can provide new insights into the
mechanisms underlying the impairment in decision-making in
opioid-addicted individuals, and could also suggest how this
may  be processed on a neural level. We  applied the reward-
and-punishment-learning task [5] and RL modeling to a group
of individuals addicted to opioids (specifically, heroin-addicted
patients on opioid maintenance treatment), and a group of
individuals who had never abused illicit drugs. Observing evi-
dence for different RL parameters in the opioid-addicted group,
relative to non-drug-using controls, would promote understand-
ing of the underlying mechanisms affecting decision-making in
opioid-addicted individuals, potentially providing insight into
how addiction is maintained and how it might be remedi-
ated.
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