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Motivated by the computational complexity of determining whether a graph is hamiltonian, 
we study under algorithmic aspects a class of polyhedra called k-pyramids, introduced 
in [31], and discuss related applications. We prove that determining whether a given graph 
is the 1-skeleton of a k-pyramid, and if so whether it is belted or not, can be done in 
polynomial time for k ≤ 3. The impact on hamiltonicity follows from the traceability of 
all 2-pyramids and non-belted 3-pyramids, and from the hamiltonicity of all non-belted 
2-pyramids. The algorithm can also be used to determine the outcome for larger values 
of k, but the complexity increases exponentially with k. Lastly, we present applications 
of the algorithm, and improve the known bounds for the minimal cardinality of systems 
of bases called foundations in graph families with interesting properties concerning 
traceability and hamiltonicity.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Determining whether a given graph is hamiltonian is a classical NP-complete problem [18]. Based on this, Garey, Johnson, 
and Tarjan [12] showed that determining traceability is an NP-complete problem, too. Even restricted to planar, cubic, 
3-connected graphs, determining hamiltonicity remains NP-complete [12]. Thus, it is also NP-complete for the class of 
polyhedral graphs. In this contribution, we focus on k-pyramids, a class of polyhedra which generalizes those having Halin 
graphs as 1-skeleta and includes pyramids and prisms. Other generalizations of Halin graphs and investigations of their 
hamiltonian properties have already been made by Skowrońska [25], Skowrońska and Sysło [26], Skupień [27], and Malik 
et al. [22].

All graphs in this paper are finite, undirected, connected, and contain neither loops nor edges. Such a graph is called 
polyhedral if it is planar and 3-connected. (Recall that there is a bijection between polyhedral graphs and the 1-skeleta 
of polytopes by Steinitz’s famous theorem [28].) In order to study a polyhedral graph G , we will need the concepts of 
dual graph and independent dominating set. On the one hand, constructing the dual graph is, algorithmically speaking, 
easily dealt with. On the other hand, it was shown by Garey and Johnson [11] that the problem of finding an independent 
dominating set of minimal cardinality (MIDS) is NP-complete. It remains NP-complete if restricted to line graphs [30], 
bipartite graphs [9,16] and dually chordal graphs [5]. Polynomial-time algorithms exist for many families of graphs, e.g. 
chordal graphs [10], interval and circular-arc graphs [7], cocomparability graphs [20], asteroidal triple-free graphs [6], and 
series–parallel graphs [24,14]. For more details, see the excellent article by Manlove [23]. In the same paper it was shown 
that MIDS, even restricted to cubic planar graphs, still is NP-complete.
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There exist several results concerning exact exponential time algorithms for MIDS. For arbitrary graphs with n vertices 
we have O (1.3575n), given in [13], and O ∗(3n/2) [21]. In the same paper they prove that for graphs with degree bounded 
by 3, we have O ∗(20.465n).

Motivated by the computational complexity of determining hamiltonicity and traceability, and Problem 3 raised in [31], 
we present two algorithms with O (n4) time complexity that, given a connected finite graph without loops and multiple 
edges, (i) determine the minimal value k for which the graph is the 1-skeleton of a k-pyramid, and (ii) whether the graph 
is belted or not. In the remainder of this paper, we will address the following subsequent problems for a given polyhedral 
input graph G:

(P1) Is there a natural number k such that G is isomorphic to a k-pyramid?
(P2) Compute k∗ , the minimal k for which (P1) holds.
(P3) Let (P2) be satisfied, and k∗ ∈ {2, 3}. Is G non-belted?

2. Definitions

A polytope P in R3 is said to be hamiltonian (traceable) if its 1-skeleton – which is a polyhedral graph – has a hamiltonian 
cycle (path). Two facets of P will be called neighbouring if they share a common edge. A polytope or one of its facets is 
called simple if each of its vertices lies on precisely three edges of the polytope. The 1-skeleton of a simple polyhedron is a 
cubic graph, i.e. a graph in which all vertices are cubic, i.e. have degree 3. We call a face of a planar graph cubic if all of its 
boundary vertices are cubic.

P is called a k-pyramid [31] if there exist at most k pairwise disjoint simple facets F1, ..., Fk , called bases, such that every 
other facet has some neighbouring base. For k ≥ 2, we call P belted if some pair of bases has no common neighbouring 
facet. In particular, we say that a belted 2-pyramid with basic cycles C1, C2 (i.e., C1 and C2 are disjoint cycles that bound 
the bases) is simply belted if every vertex of the unique cycle disjoint from C1 ∪ C2 in P is of degree 3. Denote the family of 
the 1-skeleta of (cubic, belted) k-pyramids by Pk (P3

k , Pk), and write 
⋃

k Pk = P . (P3 and P are defined analogously.) 
Notice that P1 contains precisely the well-known Halin graphs. It was proven by Bondy [3] that they are all hamiltonian – 
even 1-hamiltonian, i.e. they are hamiltonian and remain hamiltonian when removing an arbitrary vertex.

Consider G ∈ Pk . G is a graph with at most k pairwise disjoint cycles called basic cycles which bound the bases. For 
G ∈ P , define k∗ = k∗(G) = min{k ∈ N : G ∈ Pk}. For G /∈ P , put k∗(G) = ∞. Call such a set of (k∗) k basic cycles a 
(minimal) foundation. Notice that two foundations of the same graph may have different cardinalities, as for the n-gonal 
prism, n ≥ 6. Also, observe that minimal foundations can be unique (see Fig. 1), but need not be (see Figs. 3 and 4); two 
minimal foundations may even have no basic cycle in common, as is the case for the graph in Fig. 3, or the hexagonal prism. 
Keep in mind that G need not be cubic, but all vertices on the basic cycles must have degree 3, i.e. their corresponding 
facets must be simple.

The dual graph G∗ of a planar graph G has vertices each of which corresponds to a face of G , and has faces each of which 
corresponds to a vertex of G . Two vertices in G∗ are connected by an edge iff the corresponding faces in G are adjacent. 
We shall write g(F ) = v if F is a face of G , and v its corresponding vertex in G∗ .

Now let G be a polyhedral graph. We will write G = (V (G), E(G)) with |V (G)| = n and |E(G)| = m, and put G∗ = (V (G∗),
E(G∗)), where V (G∗) = {v1, ..., v f }. For a vertex v ∈ V (G) we denote by N(v) the set of all neighbours of v , and put 
N[v] = N(v) ∪ {v}. Additionally, let F (F 3) be the set of all (cubic) faces of G . We have |F | = f and put |F 3| = r.

An independent set X ⊂ V (G) of a graph G contains exclusively vertices that are pairwise non-adjacent. A set Y ⊆ V (G)

is called dominating if every vertex of G is either in Y , or a neighbour of a vertex in Y . We denote the minimal cardinality 
of an independent dominating set in G by i(G). We recall that Berge [2] observed that an independent set is dominating iff 
it is a maximal independent set. Thus i(G) is equal to the minimum cardinality of a maximal independent set in G . Berge 
also observed that every maximal independent set in a graph G is a minimal dominating set of G .

3. Computing k∗ and testing beltedness

Let G be an arbitrary graph. For G to be polyhedral it must be planar and 3-connected. We present in the following two 
algorithms. The first (see Section 3.1) covers the case when the input graph is known to be cubic, whereas the second (see 
Section 3.2) deals with arbitrary input graphs. The purpose of these algorithms is not to showcase optimal run-times, but 
to demonstrate that the algorithmic problem has polynomial complexity. We output k∗ , the minimal k for which G ∈ Pk
(lower and upper bounds for k are provided in Appendix A). If G /∈ P , we output k∗ = ∞.

Test 1 (Planarity). We test the planarity of G using the Boyer–Myrvold planarity test and embedding algorithm (BMEA) [4], 
which has a complexity of O (n). Notice that after the embedding we can traverse the f = 2 + m − n ≤ 2n − 4 faces of F in 
O (n) time.

Test 2 (3-Connectedness). For any pair of vertices u, v in G we test whether G \ {u, v} is connected. To verify whether a 
graph is connected or not can be done, for example, with a breadth-first search, which runs in O (n + m) time. Accordingly, 
this processing step has a time complexity of O (n3) for planar graphs.
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