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Constraint Satisfaction Problems (CSPs) are ubiquitous in computer science and specifically
in AI. This paper presents a method of solving the counting problem for a wide class of
CSPs using generating polynomials. Analysis of our method shows that it is much more
efficient than the classic dynamic programming approach. For example, in the case of #SAT,
our algorithm improves a result of Samer and Szeider. The presented algorithms mostly
use algebraic operations on multivariate polynomials, which allows application of known
optimizations and makes it possible to use existing software to implement them easily.
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1. Introduction

A Constraint Satisfaction Problem (CSP) is usually defined as a triplet (X,D,C), where X = (X1, X2, . . . , Xn1) is an
n1-tuple of variables, D = (D1, D2, . . . , Dn1) an n1-tuple of domains, and C = {C1, C2, . . . , Cn2 } a set of constraints. Each
constraint in C is a pair (t, R), where t = (Xi1 , Xi2 , . . . , Xil ) is an l-tuple of variables from X and R ⊆ ∏l

j=1 Di j . A solu-
tion of the CSP is an assignment of values di ∈ Di to the variables Xi , satisfying all the constraints. For such a CSP, the
corresponding counting problem #(X,D,C) is the problem of finding the number of solutions of (X,D,C).

CSPs are ubiquitous in computer science and specifically in AI. Some of the most fundamental problems, such as CNF-
SAT (conjunctive normal form satisfiability) and graph colorability, may be formulated as CSPs. CSPs are known to be
NP-complete in general, and hence it is interesting to find “islands of tractability” within this family of problems. One of the
main approaches is to find families of CSPs that do not require backtracking. For example, the family of CSPs that are de-
finable using datalog programs with at most k variables is tractable [2]. As another example, we mention that, if a CNF has
about as many clauses as variables, then it is possible to solve the minimal unsatisfiability problem in polynomial time [12].

An important family of tractable CSPs comprises those with associated graphs of bounded treewidth. The notion of
treewidth was introduced by Robertson and Seymour [9,10], and appears in many algorithms in graph theory. (An overview
can be found in [1].) The input of problems from various fields can be represented by corresponding graphs. Thus, a large
range of problems is efficiently solved by the general methods designed for problems on graphs with bounded treewidth.
It is interesting to note that, in [7], several computational problems involving multivariate polynomials are solved, using
optimizations for the corresponding graphs of bounded treewidth. In the current paper we solve problems on graphs with
bounded treewidth, using optimizations that were developed for multivariate polynomials computations.
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Graph representations for CSPs can be constructed in many ways. The common representations are primal, dual and
incidence constraint graph. By [6], a CSP of primal treewidth k has incidence treewidth at most k +1. Note that the opposite
implication does not hold; a CSP may have a corresponding primal graph of any width, while the corresponding incidence
graph is a tree (i.e., with treewidth 1). In this paper we will use the incidence graph to represent the CSP. The incidence
graph is a bipartite graph and has both the variables and the constraints as its vertices. Thus it will be natural to take the
quantity n = n1 + n2 as a measure of the size of a problem.

There is a vast literature on the subject of NP-hard CSPs, restricted to those whose corresponding graphs are of bounded
treewidth. In [3], a general method of solving CSPs with bounded treewidth in polynomial time is described. This method is
based on a relational representation of the domains of the variables and of the constraints. The main approach for this kind
of CSPs is to use dynamic programming in order to compose a full solution for the problem. An application of this method
is found in [11], where an algorithm for #SAT is presented. For a CNF with incidence graph of n vertices and treewidth k,
and with clauses of size at most l, this algorithm solves the problem in O (2k(l + 2k)kn) time. The methods described in this
paper can be applied to solve this problem in O (3kkn) time. In [5], generating polynomials are used in order to execute the
dynamic programming process more efficiently. This approach is similar to the one presented here, but it is applicable only
for the primal constraints graph (having larger treewidth in general) and only to 2-CSPs (where all constraints refer to at
most 2 variables).

The methods for solving general CSPs with bounded treewidth do not (and cannot) take into account optimizations that
can be used when restricting ourselves to certain classes of CSPs. The main challenge is to present methods that allow
significant improvements for some wide enough families of CSPs by capitalizing on their special properties. In this paper
we deal with the class of CSPs in which the domains Di and constraints C j = (t j, R j) satisfy the following conditions:

• Each Di is a finite subset of Z, 1 � i � n1.
• Each R j is of the form {a ∈ Z

n1 | P j(a) ∈L j}, where:
i) P j = ∑n1

i=1 P ji(Xi), the P ji ’s being integer polynomials in one variable.
ii) It is easy to check whether a given a ∈ Z belongs to L j .

We shall refer to such CSPs as integer CSPs. It is interesting to compare this family of problems to that of integer linear
programming (ILP) problems. In integer CSPs, we allow our constraints to be polynomial (of a special type), and not just
linear. Moreover, the sets L j are not necessarily sets of consecutive integers. On the other hand, unlike in ILP, we require
the polynomials in the constraints to be defined over Z and the domains of definition of the variables to be finite.

The incidence graph of a CSP is a bipartite graph, where one vertex class consists of the variables, and the other – of the
constraints. A variable Xi is adjacent to a constraint C j = (t j, R j) if it appears in t j . It is important to note that this means
that P ji is non-constant, namely if Xi really appears in C j in a non-trivial way. This point is crucial since the complexity of
our algorithm depends on the treewidth of the incidence graph, which could only grow if we added unneeded edges.

An integer CSP is non-negative if all monomials P ji assume only non-negative values on the domains Di . Note that every
integer CSP can be turned into a non-negative CSP simply by adding sufficiently large constants to the P ji ’s.

In this paper we provide algorithms for solving the counting problem for integer CSPs. Instead of using the relational
representation of the partial solutions, we represent all the information by generating polynomials. It turns out that, by
applying simple algebraic operators (such as addition and multiplication) to these polynomials, we solve the problem.

In Section 2 we present the main results. Section 3 gives the definitions relevant to the concepts of tree decomposition
and treewidth. Section 4 contains the proofs of the results regarding our basic algorithm for solving the counting problem
for integer CSPs. In Section 5 we present an improvement for the basic algorithm and provide the relevant proofs. We
conclude in Section 6.

2. The main results

As mentioned in the introduction, any integer CSP can be translated to a non-negative CSP. Our algorithms work, and
have the same complexity, for an integer CSP and for its translation. This point will be explained in Remark 4.7. Hence in
this section (X,D,C) is always a non-negative CSP. This will allow us to give a clear description of the algorithm, with
less complicated expressions. We denote by k the treewidth of the corresponding incidence graph. Our basic result is the
following:

Theorem 2.1. Let us assume that, for some A:

(1) P j(
∏n1

i=1 Di) ⊆ {0,1, . . . , A − 1}, 1 � j � n2 .
(2) |Di | � A, for any 1 � i � n1 .

Algorithm 1 solves #(X,D,C) in time O (nkAk+1 log A).

The first assumption in the theorem is usually much stronger than the second, but we cannot always ignore the second.
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