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Since its introduction in 1997, the M-tree became a respected metric access method
(MAM), while remaining, together with its descendants, still the only database-friendly
MAM, that is, a dynamic structure persistent in paged index. Although there have been
many other MAMs developed over the last decade, most of them require either static or
expensive indexing. By contrast, the dynamic M-tree construction allows us to index very
large databases in subquadratic time, and simultaneously the index can be maintained
up-to-date (i.e., supports arbitrary insertions/deletions). In this article we propose two
new techniques improving dynamic insertions in M-tree—the forced reinsertion strategies
and so-called hybrid-way leaf selection. Both of the techniques preserve logarithmic
asymptotic complexity of a single insertion, while they aim to produce more compact
M-tree hierarchies (which leads to faster query processing). In particular, the former
technique reuses the well-known principle of forced reinsertions, where the new insertion
algorithm tries to re-insert the content of an M-tree leaf that is about to split in order to
avoid that split. The latter technique constitutes an efficiency-scalable selection of suitable
leaf node wherein a new object has to be inserted. In the experiments we show that the
proposed techniques bring a clear improvement (speeding up both indexing and query
processing) and also provide a tuning tool for indexing vs. querying efficiency trade-off.
Moreover, a combination of the new techniques exhibits a synergic effect resulting in the
best strategy for dynamic M-tree construction proposed so far.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The methods of similarity search are becoming a standard tool in various data-oriented research areas, like multimedia
databases, data mining, bioinformatics, biometric databases, text retrieval, etc. Basically, the task of similarity search is
expressed as follows: Given a universe U of database object descriptors O i ∈ U (e.g., MPEG7 features in case of images), a
database of objects S ⊂ U, and a similarity measure δ(O i, O j) computing the similarity score between any two objects of
the universe, then we want to query the database in order to retrieve the most similar objects to our query object Q ∈ U.
At the same time, since a single computation of the similarity score δ(·,·) is considered as CPU-intensive (often quadratic
in object size, or worse), we would like to avoid the sequential search over the entire database. Unfortunately, an efficient
processing of a similarity query cannot be accomplished by conventional access/indexing methods (like B-trees), because
there does not exist a meaningful canonical ordering on the database objects.

Here come the metric access methods (MAMs) into play, a class of indexing methods aimed at similarity search of var-
ious kinds. The similarity measure δ (dissimilarity or distance, actually) is required to be a metric function, that is, it
must satisfy the reflexivity, non-negativity, symmetry and triangle inequality. Based on these properties, the MAMs par-
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tition (or index) the database S into classes, so that only some classes have to be sequentially searched when querying.
This results in less distances δ(·,·) computed at query time, and thus in more efficient retrieval. The number of distance
computations spent during index construction is referred to as the construction costs, while query costs represent the compu-
tations spent by processing a query. The already developed MAMs address various aspects—main-memory/database-friendly
methods, static/dynamic indexing, exact/approximate search, centralized/distributed indexing, etc. (see monographs [10,19]
and survey [3]). The M-tree [6] represents a centralized, dynamic, and database-friendly MAM. Although there exist MAMs
more efficient in querying performance, the M-tree (and its descendants) is still the only solution applicable to very large
databases, due to its cheap B-tree-like construction. The M-tree is also dynamic, so it is easily updatable by arbitrary inser-
tions or deletions of individual objects.

In this article we propose two new techniques improving dynamic insertion in M-tree—the forced reinsertions and so-
called hybrid-way leaf selection. The former one applies the well-known principle of forced reinsertions into M-tree, the
latter represents a scalable selection of leaf wherein a new object has to be inserted. The rest of the paper is structured as
follows—in Section 2 we review the M-tree, in Section 3 we discuss alternative ways of M-tree construction. In Sections 4
and 5 we describe the newly proposed techniques. The experimental evaluation is included in Section 6, while Section 7
concludes the paper.

2. M-tree

Based on properties well-tried in B+-tree and R∗-tree, the M-tree [6] is a dynamic metric access method suitable for
indexing of large metric databases. The structure of M-tree represents a hierarchy of nested ball regions, where data is
stored in leaves, see Fig. 1a. Every node has a capacity of m entries and a minimal occupation mmin; only the root node is
allowed to be underflowed below mmin . The inner nodes consist of routing entries rout(R):

rout(R) = [
R,ptr

(
T (R)

)
, rR , δ

(
R,Par(R)

)]
,

where R ∈ U is a routing object, ptr(T (R)) is a pointer to the subtree T (R), rR is a covering radius, and the last component
is a distance to the parent routing object Par(R) (so-called to-parent distance1) denoted as δ(R,Par(R)). In order to correctly
bound the data in T (R)’s leaves, the routing entry must satisfy the nesting condition: ∀O i ∈ T (R), rR � δ(R, O i). The routing
entry can be viewed as a ball region in the metric space, having its center in the routing object R and radius rR . A leaf
(ground) entry has a format:

grnd(D) = [
D,oid(D), δ

(
D,Par(D)

)]
,

where D ∈ S and δ(D,Par(D)) are similar as in the routing entry, and oid(D) is an external identifier of the original object
(D is just an object descriptor).

2.1. Similarity queries in M-tree

Similarly like the data regions described by routing entries, also the two most common similarity queries are described
by ball-shaped regions. The range query is defined as a ball centered in a query object Q with fixed query radius rQ , hence,
we search for objects similar to a query object more than a user-defined threshold. The k nearest neighbor (kNN) queries
retrieve the k most similar objects to Q . The kNN query region is also ball-shaped, however, the query radius, being the
distance to the kth closest object, is not known in advance, so it must be iteratively refined during kNN query processing.

The queries are implemented by traversing the tree, starting from the root.2 Those nodes are accessed, the parent regions
of which are overlapped by the query ball. The check for region-and-query overlap requires an explicit distance computation
δ(R, Q ) (called basic filtering), see Fig. 1b. In particular, if δ(R, Q ) � rQ + rR , the data ball (R, rR) overlaps the query ball
(Q , rQ ), thus the child node has to be accessed. If not, the respective subtree is filtered from further processing. Moreover,
each node in the tree contains the distances from the routing/ground entries to the center of its parent routing entry
(the to-parent distances). Hence, some of the non-relevant M-tree branches can be filtered without the need of a distance
computation (called parent filtering, see Fig. 1c), thus avoiding the “more expensive” basic overlap check. In particular, if
|δ(P , Q ) − δ(P , R)| > rQ + rR , the data ball R cannot overlap the query ball, thus the child node has not to be re-checked
by basic filtering. Note δ(P , Q ) was computed in the previous (unsuccessful) parent’s basic filtering.

2.2. Compactness of M-tree hierarchy

Since the ball metric regions described by routing entries are restricted just by the nesting condition, the M-tree hierar-
chy is very loosely defined, while for a single database we can obtain many correct M-tree hierarchies. However, not every
M-tree hierarchy built on a database is compact enough. In more detail, when the ball regions are either too large and/or
highly overlap “sibling” regions, the query processing is not efficient because routing entries of many nodes overlap the

1 The to-parent distance is not defined for entries in the root.
2 We outline just the principles, for details see the original M-tree algorithms [6,15].
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