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Abstract

Evolutionary algorithms are applied as problem-independent optimization algorithms. They are
quite efficient in many situations. However, it is difficult to analyze even the behavior of simple
variants of evolutionary algorithms like the (1 + 1) EA on rather simple functions. Nevertheless,
only the analysis of the expected run time and the success probability within a given number of steps
can guide the choice of the free parameters of the algorithms. Here static (1 + 1) EAs with a fixed
mutation probability are compared with dynamic (1+1) EAs with a simple schedule for the variation
of the mutation probability. The dynamic variant is first analyzed for functions typically chosen
as example-functions for evolutionary algorithms. Afterwards, it is shown that it can be essential
to choose the suitable variant of the (1 + 1) EA. More precisely, functions are presented where
each static (1 + 1) EA has exponential expected run time while the dynamic variant has polynomial
expected run time. For other functions it is shown that the dynamic (1 + 1) EA has exponential
expected run time while a static (1 + 1) EA with a good choice of the mutation probability has
polynomial run time with overwhelming probability.
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1. Introduction

The design and analysis of problem-specific optimization algorithms is a well-
established subject. Many tools for the analysis of deterministic or randomized algorithms
have been presented and applied. General randomized search heuristics (like simulated
annealing or evolutionary algorithms) are problem-independent optimization algorithms.
The idea is to design optimization algorithms, which are robust, i.e., they have a good,
although not optimal behavior for many of the “typical problems”. Nevertheless, it is quite
obvious that a problem-specific algorithm will outperform a problem-independent search
heuristic. Therefore, it is useful to add problem-specific modules to search heuristics when
applying them to problems with a known structure.

However, some people underestimate the need for randomized search heuristics. In the
following two scenarios, randomized search heuristics are a good choice. If a company
has to solve an optimization problem where no problem-specific algorithm is known, there
are often not enough resources (time, money, experts) to design a problem-specific algo-
rithm and it is better to apply a randomized search heuristic. The second scenario is called
black-box optimization. This is the case in many engineering applications. There is no full
information about the problem instance since, e.g., some parameters are unknown. This
excludes problem-specific algorithms but randomized search heuristics are applicable in
this scenario. For details of this scenario see Droste et al. [7].

Hence, we claim that it is necessary to analyze the behavior of randomized search
heuristics on selected problems in order to understand their advantages and disadvantages.
We do not claim that these randomized search heuristics in their pure form outperform
problem-specific algorithms. We concentrate on the maximization of discrete or pseudo-
Boolean functions f : {0,1}n → R and we analyze the dynamic (1+1) EA which is defined
in the following way.

Algorithm 1. Dynamic (1 + 1) EA for functions f : {0,1}n → R.

1. Choose a sequence pt(n) ∈ (0,1/2) called mutation probabilities for step t .
2. Choose x ∈ {0,1}n uniformly at random. Set t = 1.
3. Let y be the result of flipping each bit in x independently with probability pt(n) (mu-

tation).
4. If f (y) � f (x), set x := y (selection).
5. Increase t by 1.
6. Stop if some stopping criterion is fulfilled. Otherwise, continue at step 3.

We do not specify a stopping criterion since we investigate the dynamic (1 + 1) EA as
infinite stochastic process which never stops. The dynamic (1 + 1) EA can be generalized
to a dynamic (μ + λ) EA. Then μ search points are stored. In order to create λ new search
points (called children) we have to choose λ parents from the μ existing search points
(with possible repetitions). Since there are many selection procedures for this step, we do
not describe the dynamic (μ + λ) EA in detail. In any case, the λ best search points of
the multiset of parents and children are chosen to be stored (to build the next generation).
There has to be a rule to break ties.
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