
Journal of Logical and Algebraic Methods in Programming 84 (2015) 197–217

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in 

Programming
www.elsevier.com/locate/jlamp

A framework for computing finite SLD trees ✩

Naoki Nishida a, Germán Vidal b,∗
a Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, 4648603 Nagoya, Japan
b MiST, DSIC, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 May 2014
Received in revised form 30 November 2014
Accepted 30 November 2014
Available online 5 December 2014

Keywords:
Logic programming
Semantics
Program analysis

The search space of SLD resolution, usually represented by means of a so-called SLD tree, is 
often infinite. However, there are many applications that must deal with possibly infinite 
SLD trees, like partial evaluation or some static analyses. In this context, being able to 
construct a finite representation of an infinite SLD tree becomes useful.
In this work, we introduce a framework to construct a finite data structure representing 
the (possibly infinite) SLD derivations for a goal. This data structure, called closed SLD tree, 
is built using four basic operations: unfolding, flattening, splitting, and subsumption. We 
prove some basic properties for closed SLD trees, namely that both computed answers and 
calls are preserved. We present a couple of simple strategies for constructing closed SLD 
trees with different levels of abstraction, together with some examples of its application. 
Finally, we illustrate the viability of our approach by introducing a test case generator 
based on exploring closed SLD trees.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the context of logic programming, partial evaluation (also known as partial deduction [25]) is a well known technique 
to specialize programs. Intuitively speaking, given a logic program P and a finite set of atoms A = {a1, . . . , an}, one should 
construct finite—possibly incomplete—SLD trees for the atomic goals ← a1, . . . , ← an , such that every leaf in these trees 
is either successful, a failure, or only contains atoms that are instances of {a1, . . . , an}. This condition, called closedness
condition [25], ensures that the computed trees are self-contained, which in turn guarantees the correctness of the approach.

In this work, we aim at generalizing this idea by introducing a general framework to construct finite representations of 
(possibly infinite) SLD trees, so that they can also be used in other contexts. Indeed, there are many problems in computer 
science that require dealing with (a finite representation of) an infinite search space. Besides partial evaluation, static analy-
ses and model checking techniques, for instance, aim at exploring all possible computations starting from a goal or from a 
class of goals, some of which are usually infinite. Furthermore, there are many approaches (see, e.g., [1–3,9,8,15,16,27,29,
38]) that advocate a transformational approach in which a program with imperative, object-oriented or concurrent features—
which are often difficult to analyze—are compiled into a simpler, rule-based intermediate language (usually ignoring some 
details or abstracting away some features), where rigorous program analyses can be defined and implemented in a simpler 

✩ This work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Economía y Competitividad (Secretaría de Estado de Investigación, 
Desarrollo e Innovación) under grant TIN2013-44742-C4-1-R and by the Generalitat Valenciana under grant PROMETEO/2011/052.

* Corresponding author.
E-mail addresses: nishida@is.nagoya-u.ac.jp (N. Nishida), gvidal@dsic.upv.es (G. Vidal).

http://dx.doi.org/10.1016/j.jlamp.2014.11.006
2352-2208/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jlamp.2014.11.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:nishida@is.nagoya-u.ac.jp
mailto:gvidal@dsic.upv.es
http://dx.doi.org/10.1016/j.jlamp.2014.11.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2014.11.006&domain=pdf


198 N. Nishida, G. Vidal / Journal of Logical and Algebraic Methods in Programming 84 (2015) 197–217

way. One of the most popular such rule-based languages is Prolog. Therefore, our framework may contribute to the use of 
Prolog as a target language within the above transformational approach to program analysis.

In particular, we introduce an extension of standard SLD trees that are built using four basic operations: unfolding (based 
on SLD resolution), flattening (i.e., generalizing some atoms in a goal), splitting (i.e., partitioning a goal into a number of 
subgoals that are then evaluated independently) and subsumption (a sort of memoization). When all the leaves of the tree 
are either successful, a failure or a subsumed goal, we speak of a closed SLD tree. Besides formalizing this notion, our main 
contributions are the following:

• Given a program and a goal, we show that a closed SLD tree can always be constructed using an appropriate strategy. 
Here, we present a couple of strategies that produce closed SLD trees with different levels of abstraction.

• We prove that the computed answers of a standard (possibly infinite) SLD tree and those of an associated closed SLD 
tree (no matter the considered strategy) are the same. Thus, the abstraction involved in producing closed SLD trees does 
not affect the computed answers represented by the tree.

• We also prove that, for every call in a standard SLD tree, there is a (possibly more general) call in any associated closed 
SLD tree. This property guarantees the usefulness of closed SLD trees for those program analysis where computing (an 
approximation of) the call patterns of a goal is required.

• Then, we show how the success set of a closed SLD tree can be represented in a compact way by means of equations. 
This might be useful, e.g., for program comprehension.

• Finally, we illustrate the viability of our approach by introducing a fully automatic test case generator based on exploring 
closed SLD trees.

This paper is organized as follows. After some preliminaries, Section 3 introduces the basic operations involved in the 
construction of closed SLD trees and states a number of properties for them. Specific strategies for constructing closed SLD 
trees are introduced and illustrated by means of examples in Section 4. In Section 5, the design of a test case generator 
is introduced. Finally, Section 6 discusses some related work and Section 7 concludes and points out some directions for 
further research.

2. Preliminaries

In this section, we briefly present some basic notions from logic programming; we refer the interested reader to [24] for 
a detailed introduction to this paradigm.

We consider a first-order language with a fixed vocabulary of predicate symbols, function symbols, and variables denoted 
by Π , F , and V , respectively. We let T (F , V) denote the set of terms constructed using symbols from F and variables 
from V . An atom has the form p(t1, . . . , tn) with p/n ∈ Π and ti ∈ T (F , V) for i = 1, . . . , n. A definite clause has the form 
head ← body, where head is an atom and body ≡ (a1 ∧ · · · ∧ an) is a goal1 (a conjunction of atoms); the empty goal is 
denoted by true. We usually denote goals with capital letters (e.g., G, C, . . .) and atoms with small letters (e.g., a, b, . . .). 
A definite program is a finite set of definite clauses. In the following, we focus on definite programs and will refer to them 
just as programs (analogously to clauses and goals). Var(s) denotes the set of variables in the syntactic object s.

Substitutions and their operations are defined as usually. In particular, a substitution {x1 �→ t1, . . . , xn �→ tn} denotes a 
(partial) mapping σ such that σ(x) = ti if x = xi , i = 1, . . . , n, and σ(x) = x otherwise. The set Dom(σ ) = {x ∈ V | σ(x) 	= x}
is called the domain of a substitution σ . The empty substitution is denoted by id. A substitution σ is idempotent if σ = σ ·σ , 
where “·” denotes the standard composition operator on substitutions. The restriction θ �V of a substitution θ to a set of 
variables V is defined as follows: xθ �V = xθ if x ∈ V , and xθ �V = x otherwise. We say that θ = σ [V ] if θ �V = σ �V . This 
notation is extended to sets of substitutions in the natural way: Θ1 = Θ2 [V ] implies that there is a substitution θ1 ∈ Θ1 iff 
there is a substitution θ2 ∈ Θ2 such that θ1 = θ2 [V ]. A syntactic object s1 is more general than a syntactic object s2, denoted 
s1 ≤ s2, if there exists a substitution θ such that s2 = s1θ . A substitution θ is a unifier of two syntactic objects t1 and t2 iff 
t1θ = t2θ ; furthermore, θ is the most general unifier of t1 and t2, denoted by mgu(t1 = t2) if, for every other unifier σ of t1
and t2, we have that θ ≤ σ . The mgu operator is naturally extended to a conjunction of equations. A variable renaming is a 
substitution that is a bijection on V . Two syntactic objects t1 and t2 are variants (or equal up to variable renaming), denoted 
t1 ≈ t2, if t1 = t2ρ for some variable renaming ρ .

Computations in logic programming are formalized by means of SLD resolution. The notion of computation rule R is used 
to select an atom within a goal for its evaluation. Given a program P , a goal G ≡ (a1 ∧ · · · ∧ an), and a computation rule 
R, we say that G �P ,R,σ G ′ is an SLD resolution step for G with P and R if R(G) = ai , 1 ≤ i ≤ n, is the selected atom, 
h ← b1 ∧ · · · ∧ bm is a renamed apart clause (i.e., a clause with fresh variables not used before in the computation) of P , 
σ = mgu(ai = h), and G ′ ≡ (a1 ∧ · · · ∧ ai−1 ∧ b1 ∧ · · · ∧ bm ∧ ai+1 ∧ · · · ∧ an)σ ; we often omit P , R, and/or σ in the notation 
of an SLD resolution step when they are clear from the context.

Let P be a program, G0 a goal and R a computation rule. An SLD derivation for G0 with P and R is a (finite or infinite) 
sequence G0, G1, G2, . . . of goals, a sequence C1, C2, . . . of renamed apart clauses of P , a sequence R(G0), R(G1), R(G2), . . .

1 We use “≡” to denote the identity on syntactic objects, and identify goals with (possibly empty) conjunctions of atoms.



Download English Version:

https://daneshyari.com/en/article/431419

Download Persian Version:

https://daneshyari.com/article/431419

Daneshyari.com

https://daneshyari.com/en/article/431419
https://daneshyari.com/article/431419
https://daneshyari.com

