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We study the algebraic theory of computable functions, which can be viewed as arising 
from possibly non-halting computer programs or algorithms, acting on some state space, 
equipped with operations of composition, if-then-else and while-do defined in terms of 
a Boolean algebra of conditions. It has previously been shown that there is no finite 
axiomatization of algebras of partial functions under these operations alone, and this holds 
even if one restricts attention to transformations (representing halting programs) rather 
than partial functions, and omits while-do from the signature. In the halting case, there 
is a natural “fix”, which is to allow composition of halting programs with conditions, 
and then the resulting algebras admit a finite axiomatization. In the current setting 
such compositions are not possible, but by extending the notion of if-then-else, we are 
able to give finite axiomatizations of the resulting algebras of (partial) functions, with 
while-do in the signature if the state space is assumed finite. The axiomatizations are 
extended to consider the partial predicate of equality. All algebras considered turn out 
to be enrichments of the notion of a (one-sided) restriction semigroup.

Crown Copyright © 2014 Published by Elsevier Inc. All rights reserved.

1. Motivation and definitions

1.1. Some terminology

Let X, Y be sets. A function X → Y is a partial map from a subset of X into Y , and the set of all such is denoted 
P(X, Y ). If Y = X this is denoted P(X), a semigroup under composition (read left to right, so that ( f g)(x) = g( f (x)) for all 
f , g ∈P(X) and x ∈ X), and an element of P(X) is called a function on X . Because X is usually some fixed “global domain”, 
we use the name domain of f (written dom( f )) to denote the subset of points at which f is actually defined. The identity 
map 1X on X is the total function on X that fixes every x ∈ X , and the null map 0X is the function on X with empty domain; 
they are respectively identity and zero elements in the semigroup P(X). The subscript X will be omitted where the choice 
is clear. A transformation on X is an everywhere-defined function in P(X) (that is, having domain all of X); the set of all 
such is T (X), a submonoid of P(X). Transformations are also known as total functions.

A predicate on X is an everywhere-defined function X → {T , F }; the set of all such is 2X , a Boolean algebra under 
the usual logical connectives. Denote by I(X) the monoid of restrictions of the identity function under composition; it is 
isomorphic to the semilattice (2X , ∩).
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1.2. Computable functions

Many authors have investigated algebraic foundations for facets of the theory of computer programs: amongst others 
we have in mind are sum-ordered (partial) semirings (Manes and Benson [29]), dynamic algebras (Pratt and others, see [34]), 
Kleene algebras with tests (KAT) (Kozen [25]), Kleene algebra with domain (KAD; Desharnais, Möller and Struth [9]; see also 
Hirsch and Mikulás [18] and Desharnais, Jipsen and Struth [8]), modal semirings (Möller and Struth [32]), refinement algebras
(von Wright [40]), correctness algebras (Guttmann [16]), as well as the authors’ own contributions such as modal restriction 
semigroups [22]. Approaches based on the full Tarski algebra of relations are detailed by Maddux in [27].

These algebraic approaches have substantial connections with classical program logics, such as Hoare logic and various 
propositional dynamic logics, enabling straightforward algebraic equational reasoning to supplant the conventional logical 
approach. Indeed, with the exception of KAT (which does not allow for domain information), the algebraic systems men-
tioned are designed to interpret at least the modal logic part of dynamic logic. However the family of computable (that is, 
partial recursive) functions on a set X is not typically a model of any of these algebraic systems.

First, in all but the case of modal restriction semigroups, these algebraic systems allow for union and usually reflexive 
transitive closure, reflecting the expressiveness of the associated logical systems. This effectively forces a relational semantics 
rather than a functional one. However, if one sticks to the basic if-then-else and while-do constructs, there is no need to use 
a relational semantics: partial functions suffice.

Additionally, many of these systems admit a notion of domain complementation, which is not compatible with the 
computability assumption. More specifically, in dynamic logic, the proposition [ f ] false (“necessarily false” as determined 
by f as a modal relation) holds exactly on the points at which the program f fails to halt, and in general this is clearly not 
computable. Moreover, in the algebraic formulations mentioned (as well as in dynamic logic itself), these propositions may 
themselves then become test conditions within other programs. Thus constructions such as “while program f does not halt 
do program g” can be expressed, and indeed give rise to their own nonhalting proposition and so on.

Test conditions arising in actual programs are typically Boolean combinations of basic tests, and certainly not statements 
on halting conditions. The goal of the present article is to present algebraic systems that are rich enough to express standard 
deterministic programming connectives, such as if-then-else, as well as tests for equality and non-equality of variable values, 
yet does not permit the leaching of statements on halting into the test type. The set of all partial recursive functions on N
will provide a model, in contrast to the more common approach in which binary relations model programs. (There are of 
course other approaches to program algebra, such as predicate transformer semantics, but these work at a lower level in 
which assignments are modeled for example.)

The main results consist of finite axiomatizations for these systems, which we are able to show are complete (for the 
full first order theory, not just the equational fragment) with respect to suitable functional semantics. Operations modeling
looping are also considered, but for these we are unable to obtain finite axiomatizations, instead making do with axioms 
at least guaranteeing that certain desirable properties are satisfied, including completeness for finite (and even periodic) 
algebras.

The basic approach shares features of both the KAT approach of Kozen [25] and the modal restriction semigroups with 
preferential join approach of Jackson and Stokes [22]. Our algebraic systems consist of a semigroup of functions with an 
embedded sort B of “tests”, which will form a Boolean algebra in which the meet operation is just the underlying multipli-
cation of the semigroup (so that the tests will form a subsemilattice: an idempotent and commutative subsemigroup), and 
with a Boolean complementation operation (which is not defined outside of the test sort).

So far this is identical to the union- and star-free fragment of the algebraic systems considered in KAT. However, we 
also consider unary operations modelling domain (as in KAD, or modal restriction semigroups and its predecessors [19]) as 
well as various equality test, if-then-else and while-do constructions. All elements of the test sort B are fixed by domain, 
but in general domain elements form a strictly larger subsemilattice than B . This reflects the fact that for us, tests are to 
be viewed as conditions in programs (and indeed as special types of programs themselves) rather than as assertions: we 
have no need to generate weakest preconditions for example, hence no need to view general domain elements as tests, and 
indeed no need for domain complement (antidomain) at all.

Another significant difference with KAT and KAD is that we use partial functions as our semantics of programs rather 
than binary relations. This relates to the fact that we seek to model programs themselves rather than assertions about 
programs: we have no need of union or Kleene closure, which feature in dynamic logic for example, so we do not need 
binary relations either. (Binary relations are of course closed under both operations, while partial functions are closed under 
neither.)

The computable functions on a set X will form a model of each of the systems we consider, with B modelling a Boolean 
algebra of identity maps with recursive domains, and with general domain elements corresponding to the identity map on 
recursively enumerable subsets of X (which are exactly the domains of computable functions).

For the remainder of this section we further motivate and then carefully define the additional operations used to model 
if-then-else and other constructions.

1.3. Extending if-then-else

Operations modelling the if-then-else command of imperative programming languages have been modelled algebraically 
by a number of authors. The idea is to model programs as functions X → Y (or even binary relations in X × Y , though we 
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