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A meadow is a commutative ring with a total inverse operator satisfying 0−1 = 0. We show 
that the class of finite meadows is the closure of the class of Galois fields under finite 
products. As a corollary, we obtain a unique representation of minimal finite meadows in 
terms of finite prime fields.
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1. Introduction

In abstract algebra, a field is a structure with operations of addition, subtraction and multiplication. Moreover, every 
element has a multiplicative inverse—except 0. In a field, the rules hold which are familiar from the arithmetic of ordinary 
numbers. The prototypical example is the field of rational numbers. Fields can be specified by the axioms for commutative 
rings with identity element, and the negative conditional formula

x �= 0 → x · x−1 = 1,

which is difficult to apply or automate in formal reasoning.
The theory of fields is a very active area which is not only of great theoretical interest but has also found applications, 

within mathematics—combinatorics and algorithm analysis—as well as in engineering sciences, in particular, in coding theory 
and sequence design. Unfortunately, a nontrivial product of fields is not a field. Hence the class of fields is not a variety, and 
cannot be axiomatized by equations only.

In [4], the equationally defined class of meadows was introduced, structures very similar to fields—the considerable 
difference being that meadows do constitute a variety. All fields and products of fields can be viewed as meadows—basically 
by stipulating 0−1 = 0—but not conversely. Also, every commutative Von Neumann regular ring (see e.g. [8]) can be expanded 
to a meadow (cf. [2]). From a computer science point of view, the concept of a meadow contributes to the algebraic 
specification of number systems. Advantages and disadvantages of the algebraic specification of data types have been amply 
discussed in the computer science literature.

Many structures that arise in practice are finite. This motivates the study of finite structures in general. The aim of this 
paper is to describe the structure of finite meadows. We will show that the class of finite meadows is the closure of the 
class of finite fields under finite products. As a corollary, we obtain a unique representation of minimal meadows in terms 
of prime fields. This result also follows from the observation that meadows are biregular and hence semisimple rings, and 
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the connection between commuting idempotents and direct product decomposition into simple rings as expounded in [6]. 
Here, however, we will give a direct proof by a straightforward combination of basic properties of meadows. Some of these 
results were already announced in [1].

2. Preliminaries

In this section we recall the basic properties of rings and meadows.

Definition 2.1. A commutative ring is a structure 〈R, +, −, ·, 0, 1〉 such that for all x, y, z ∈ R

(1) (x + y) + z = x + (y + z)
(2) x + y = y + x
(3) x + 0= x
(4) x + (−x)=0
(5) (x · y) · z = x · (y · z)
(6) x · y = y · x
(7) x · 1= x
(8) x · (y + z)= x · y + x · z.

We will write x − y for x + (−y).

The following properties of commutative rings are well-known.

Proposition 2.2. Let R be a commutative ring and x, y ∈ R. Then

1. the identity 1 is unique,
2. 0 · x = 0,
3. (−x) · y = −(x · y),
4. (−1) · x = −x,
5. −0 = 0,
6. (−x) + (−y) = −(x + y),
7. −(−x) = x.

Proposition 2.3. Let R be a commutative ring. For any x ∈ R, there exists at most one y ∈ R with x · x · y = x and y · y · x = y.

Proof. Let z be another element such that x · x · z = x and z · z · x = z. We have

y = y · y · x = y · y · (x · x · z) = (y · y · x) · (x · z) = y · x · z = x · y · z.

Hence, by symmetry, z = x · y · z and thus y = z. �
Definition 2.4. Let R be a commutative ring and x ∈ R . If it exists, we call the element y ∈ R uniquely determined by 
x · x · y = x and y · y · x = y the generalized inverse of x and denote it by x−1.

Proposition 2.5. Let R be a commutative ring. We have

1. 0−1 = 0,
2. 1−1 = 1 and (−1)−1 = −1,
3. (x−1)−1 = x for all x ∈ R for which the generalized inverse exists.

Proof. (1) From 0 · 0 · 0 = 0 it follows that 0 is the generalized inverse of 0, i.e. 0−1 = 0. (2) From 1 · 1 · 1 = 1 it follows that 
1 is the generalized inverse of 1, i.e. 1−1 = 1, and similarly (−1)−1 = −1. (3) Since the equalities x · x · a = x and a · a · x = a
are symmetric in a and x, it follows that x is the inverse of a. Thus x = a−1 = (x−1)−1. �
Examples 2.6.

1. In the commutative ring Q of rational numbers, every element has a generalized inverse. If x �= 0, the inverse is just the 
“regular” inverse, and 0−1 = 0.
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