J. Parallel Distrib. Comput. 85 (2015) 79-90

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

An exact algorithm for sparse matrix bipartitioning M) cocertan

Daniél M. Pelt®*, Rob H. Bisseling®

2 Scientific Computing Group, Centrum Wiskunde & Informatica, P.0. Box 94079, 1090 GB Amsterdam, The Netherlands

b Mathematical Institute, Utrecht University, P.O. Box 80010, 3508 TA Utrecht, The Netherlands

HIGHLIGHTS

e We present an exact branch-and-bound algorithm for sparse matrix bipartitioning.
e Rows and columns are partitioned instead of nonzeros to reduce computation time.
e For 85% of a test set of small matrices, an optimal bipartitioning was found.

e The largest matrix that was optimally bipartitioned has 129,042 nonzeros.

e A benchmark collection of optimal results will be made publicly available.

ARTICLE INFO ABSTRACT

Article history:

Received 16 December 2014
Received in revised form

1 May 2015

Accepted 16 June 2015
Available online 22 June 2015

Keywords:

Branch-and-bound

Exact algorithm

Hypergraph

Parallel computing

Partitioning

Sparse matrix

Sparse matrix-vector multiplication

The sparse matrix partitioning problem arises when minimizing communication in parallel sparse
matrix-vector multiplications. Since the problem is NP-hard, heuristics are usually employed to find
solutions. Here, we present a purely combinatorial branch-and-bound method for computing optimal
bipartitionings of sparse matrices, in the sense that they have the lowest communication volume out of
all possible bipartitionings obeying a certain load balance constraint. The method is based on a way of par-
titioning similar to the recently proposed medium-grain heuristic, which reduces the number of solutions
to be considered in the branch-and-bound method.

We applied the proposed optimal bipartitioner to find the optimal communication volume of all ma-
trices of the University of Florida sparse matrix collection with 1000 nonzeros or less. For 85% of the ma-
trices, an optimal bipartitioning was found within a single day of computation and for 58% even within a
second. We also present optimal results for selected larger matrices, up to 129,042 nonzeros. The optimal
bipartitionings and corresponding communication volumes are made publicly available in a benchmark
collection.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

disjoint parts,

Parallel iterative linear system solvers can be tremendously ac-
celerated by using a good partitioning of the sparse matrices in-
volved, which means that the parts have nearly equal size and that
there are few dependencies between them. Other parallel com-
putations that are based on sparse matrix-vector multiplication
(SpMV), such as eigensystem solvers, can benefit as well.

The sparse matrix partitioning problem can be defined as finding
a partitioning of a sparse m x n matrix A with N nonzeros in p

* Corresponding author.
E-mail addresses: d.m.pelt@cwi.nl (D.M. Pelt), R.H.Bisseling@uu.nl
(R.H. Bisseling).

http://dx.doi.org/10.1016/j.jpdc.2015.06.005
0743-7315/© 2015 Elsevier Inc. All rights reserved.

p—1
A= UA,-, (1)
i=0

such that the number of nonzeros of part A; satisfies

N
lAil = (1 +¢) L)—‘, for0 <i<p, (2)

where ¢ > 0 is a given load-imbalance parameter, and such that
the communication volume in the corresponding parallel SpMV
is minimized. The load balance constraint (2) is formulated such
that the extreme case ¢ = O still has a feasible solution. The
communication volume of a matrix column j is defined as A; — 1,
where A; is the number of matrix parts with a nonzero in column


http://dx.doi.org/10.1016/j.jpdc.2015.06.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2015.06.005&domain=pdf
mailto:d.m.pelt@cwi.nl
mailto:R.H.Bisseling@uu.nl
http://dx.doi.org/10.1016/j.jpdc.2015.06.005

80 D.M. Pelt, R.H. Bisseling / . Parallel Distrib. Comput. 85 (2015) 79-90

v

—

Uu

Fig. 1. Parallel multiplication of a 5 x 5 sparse matrix A and a dense input vector
v giving a dense output vector i = Av. The 16 nonzero elements of A have been
partitioned and assigned to p = 2 processors, depicted in light and dark gray. The
vector components have also been assigned to these two processors. The parallel
computation starts by communicating three vector components vj, as depicted by
vertical arrows, then it computes and adds all products a;;v; locally, and finally it
sends one contribution, for the second row of A, as depicted by a horizontal arrow,
to enable computation of the output components u; = ), a;;v;. Note that the other
rows do not require communication. The total communication volume is Vol = 4.
The load balance of the nonzeros is perfect (¢ = 0).

j. This volume occurs because in a parallel SpMV,
i = Av, (3)

we have to send input vector component v; to all parts that have a
nonzero in column j, except for one part, provided we assign vector
component vj to one of the A; parts. This communication is shown
as vertical arrows in Fig. 1. Similarly, we can define the commu-
nication volume of a matrix row. The total communication volume
Vol = Vol(Ay, . .., Ap—1) is then the sum of the communication vol-
umes of all rows and columns, and our optimization objective is to
minimize Vol.

Finding an optimal sparse matrix partitioning is NP-hard, even
for p = 2, because the underlying hypergraph partitioning
problem is NP-hard [31]. Therefore, most solution methods so
far have been heuristic, trying to find a good but not necessarily
optimal partitioning in reasonable time. An example of a fast
heuristic is the medium-grain method [34] which we recently
developed; this method will be briefly explained in Section 3.

The purpose of the present article is to find an optimal solution,
accepting much longer computation times, and if needed limiting
the size of the problems we can solve. Our motivation is that hav-
ing a suite of problems with optimal partitionings will be useful,
because we can then compare heuristic solutions with an optimal
benchmark solution, and see how good the heuristic methods re-
ally are. As heuristics are improving, perhaps even to the point of
saturation, it may be beneficial to know how far we are from an
optimal solution, and perhaps decide to optimize further for other,
secondary objectives instead, such as the total number of messages
sent.

In this article, we will concentrate on bipartitioning, i.e. p = 2,
because this is the easiest problem and we can expect to build
a larger suite of solved problems than for p > 2, and also
because many partitioners are based on recursive bipartitioning.
The resulting suite will be made available through the website of
the Mondriaan package.! Furthermore, we present in this article
and on the website a set of pictures of optimal solutions for small
matrices. In our experience, visualization of optimal partitionings
is not only pleasing to the eye, but also helpful in inspiring new
ideas for improving current heuristic solution methods. As a matter
of fact, this is how we were led to design the medium-grain
method [34].

1 http://www.staff.science.uu.nl/~bisse101/Mondriaan/.

2. Related work

Catalyiirek and Aykanat [10] were the first to formulate the
minimization of the communication volume of a parallel SpMV as
a hypergraph partitioning problem, thus solving the problem in
the correct metric. Previously, graph partitioning was commonly
employed, which only gives an approximation of the correct
volume. In the row-net model of Catalyiirek and Aykanat, the n
columns of the sparse matrix are modeled by the vertices of a
hypergraph, and the m rows are modeled by nets (hyperedges,
i.e. subsets of the vertices), such that vertex i is contained in net
jifand only if a; # 0. The balance criterion of Eq. (2) is translated
into a criterion on the weights of the vertices, where the weight
of vertex j is defined as the number of nonzeros in matrix column
j. The communication volume is modeled as the sum of the costs
Ai— 1for all nets (rows) i. In the column-net model, the roles of rows
and columns are reversed. Both models yield a one-dimensional
(1D) matrix partitioning.

A different model by the same authors is the fine-grain model
[11], which is two-dimensional (2D) in nature. It models the N
nonzeros as vertices in a hypergraph and it has both m row nets
and n column nets, defined similarly as in the 1D case. This model
also minimizes the correct volume, and since it is more general it
canin principle achieve better solutions; this is at the cost of longer
computation times and more memory usage, as the hypergraph
has many more vertices.

A different 2D method for p > 2 can be obtained by repeatedly
bipartitioning a submatrix of A, trying both 1D hypergraph models
with p = 2, and using the best of the two, which is done in
the earlier versions of the Mondriaan package [38] (until version
3), and which we call the localbest method. In the latest version
(version 4) of Mondriaan, the default has been changed to the
recent medium-grain method.

Communication volume may not be the only relevant metric for
the actual communication time of a parallel SpMV. Boman, Devine,
and Rajamanickam [6] present a 2D method based on combining
1D graph/hypergraph partitioning with a 2D block distribution
that also limits the total number of messages, besides trying to
minimize the communication volume. A different approach to
minimize other metrics as well is taken by the authors of the UMPa
package [13], where the total and maximum volume per processor,
and the total and maximum number of messages per processor can
be chosen as primary or secondary objectives, and the secondary
objective is used to break ties. This necessitates the use of a directed
hypergraph, where every net has a source vertex.

Several software packages for hypergraph partitioning are
currently available: sequential packages hMetis [25], PaToH [10],
Mondriaan [38], and the parallel packages Parkway [37] and
Zoltan [17]. Zoltan also contains a parallel toolkit Isorropia [5] that
provides a sparse matrix partitioning interface (currently only for
1D partitioning). All these partitioners are heuristic, and all are
based on a multilevel approach, first coarsening the hypergraph to
obtain a smaller hypergraph that still resembles the original one,
then obtaining an initial partitioning, and finally projecting back
the solutions during the uncoarsening, while further refining them.

Graph partitioners have been studied for at least four decades,
with the seminal paper by Kernighan and Lin [28] providing one
of the first heuristic algorithms. The graph partitioning problem is
usually defined as partitioning the vertices of a graph in such a way
that the number of vertices is balanced with an allowed imbalance
fraction of ¢, similar to Eq. (2), and the objective is to minimize the
total edge cut, the number of edges of the graph with vertices in
different parts of the partitioning. Kernighan and Lin proposed a
bipartitioning procedure which starts with a random partitioning,
and then repeatedly swaps a pair of vertices between the two parts,
choosing the swap with the largest possible gain, irrespective of


http://www.staff.science.uu.nl/%7Ebisse101/Mondriaan/

Download English Version:

https://daneshyari.com/en/article/431437

Download Persian Version:

https://daneshyari.com/article/431437

Daneshyari.com


https://daneshyari.com/en/article/431437
https://daneshyari.com/article/431437
https://daneshyari.com

