
J. Parallel Distrib. Comput. 85 (2015) 91–103

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

All-Pairs Shortest Path algorithms for planar graph for
GPU-accelerated clusters✩

Hristo Djidjev a,∗, Guillaume Chapuis a, Rumen Andonov b, Sunil Thulasidasan a,
Dominique Lavenier b
a Los Alamos National Laboratory, Los Alamos, NM, USA
b INRIA/IRISA and University of Rennes 1, Campus de Beaulieu, 35042 Rennes, France

h i g h l i g h t s

• We develop a new approach for the All-Pairs Shortest Path problem in planar graphs.
• We target execution on large CPU–GPU clusters and graphs with millions of vertices.
• We design a centralized (master/slave) and a decentralized (distributed) version.
• Our algorithms are work-efficient and allow a high-degree of parallelism.
• Our algorithms are significantly faster than the previous ones.

a r t i c l e i n f o

Article history:
Received 10 January 2015
Received in revised form
22 June 2015
Accepted 29 June 2015
Available online 22 July 2015

Keywords:
All-pairs shortest path problem
Planar graphs
GPGPU
Parallel computing
Floyd–Warshall algorithm
Distributed computing
Algorithm analysis

a b s t r a c t

We present a new approach for solving the All-Pairs Shortest-Path (APSP) problem for planar graphs
that exploits the massive on-chip parallelism available in today’s Graphics Processing Units (GPUs). We
describe two new algorithms based on our approach. Both algorithms use Floyd–Warshall method, have
near optimal complexity in terms of the total number of operations, while their matrix-based structure
is regular enough to allow for efficient parallel implementation on the GPUs. By applying a divide-and-
conquer approach, we are able to make use of multi-node GPU clusters, resulting in more than an order
of magnitude speedup over fastest known Dijkstra-based GPU implementation and a two-fold speedup
over a parallel Dijkstra-based CPU implementation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Shortest-path computation is a fundamental problem in com-
puter sciencewith applications in diverse areas such as transporta-
tion, robotics, network routing, and VLSI design. The problem is to
find paths of minimum weight between pairs of nodes in edge-
weighted graphs, where the weight |p| of a path p is defined as
the sum of the weights of all edges of p. The distance between two
nodes v andw is defined as theminimumweight of a path between
v and w.

✩ Preliminary version of this work was presented at IPDPS 2014.
∗ Corresponding author.

E-mail addresses: djidjev@lanl.gov (H. Djidjev), gchapuis@lanl.gov (G. Chapuis),
randonov@irisa.fr (R. Andonov), sunil@lanl.gov (S. Thulasidasan), lavenier@irisa.fr
(D. Lavenier).

There are two basic versions of the shortest-path problem: in
the single-source shortest-path (SSSP) version, given a source node
s, the goal is to find all distances between s and the other nodes of
the graph; in the all-pairs shortest-path (APSP) version, the goal is
to compute the distances between all pairs of nodes in the graph.
While the SSSP problem can be solved very efficiently in nearly
linear time by using Dijkstra’s algorithm [5], the APSP problem is
much harder computationally.

Two main families of algorithms exist to solve the APSP prob-
lem exactly: the first family is based on the Floyd–Warshall
algorithm [3], while the second derives from Dijkstra’s algo-
rithm. Floyd–Warshall’s approach consists in iterating through
every vertex vk of the graph to improve the best known dis-
tance between every pair of vertices (vi, vj). The complexity of
this approach is O(|V |

3), where V is the set of the vertices,
regardless of the density of the input graph. While the algo-
rithm works for arbitrary graphs (including those with negative

http://dx.doi.org/10.1016/j.jpdc.2015.06.008
0743-7315/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2015.06.008
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2015.06.008&domain=pdf
mailto:djidjev@lanl.gov
mailto:gchapuis@lanl.gov
mailto:randonov@irisa.fr
mailto:sunil@lanl.gov
mailto:lavenier@irisa.fr
http://dx.doi.org/10.1016/j.jpdc.2015.06.008

92 H. Djidjev et al. / J. Parallel Distrib. Comput. 85 (2015) 91–103

edge weights, but no negative cycles1), its cubic complexity makes
it inapplicable to very large graphs.

Given that Dijkstra’s algorithm solves the SSSP problem, it
is possible to solve the APSP problem by simply running Dijk-
stra’s algorithm over all source vertices in the graph. When using
min-priority queues, the complexity of this approach is O(|E| +

|V | log |V |) for the SSSP problem, where V and E are the sets of
the vertices and edges, respectively. For the APSP problem, the to-
tal complexity is thus O(|V | ∗ |E| + |V |

2 log |V |), which becomes
O(|V |

3) when the graph is complete, but only O(|V |
2 log |V |) when

|E| = O(|V |), making this approach faster than Floyd–Warshall for
sparse graphs.

Solving the All-Pairs Shortest Path problem is important not
only in transportation-related problems, but also in many other
domains. It is the first step to obtaining several network measures
that are of importance in domains such as social network analysis
or in bioinformatics. One such measure is the betweenness central-
ity, which is defined, for any vertex v, as the number of shortest
paths between all pairs of vertices that pass through v, and is a
measure of a v’s centrality (importance) in the network. Some al-
gorithms use the centrality of the nodes in a network in order to
compute its community structure. Furthermore, in several appli-
cations, the networks that need to be analyzed may have negative
weights, and hence one needs an algorithm that solves the APSP
problem for graphswith real (positive aswell as negative) weights.
In online social networks, for instance, negative weights may be
used to indicate antagonism between two individuals [13] or even
conflicts and alliances between two groups [24]. Causal networks
in bioinformatics also use negative edges to represent inhibitory
effects [10].

In this paper, we present a new approach for solving the APSP
problem for planar graphs that exploits the great degree of paral-
lelism available in today’s Graphics Processing Units (GPU). GPUs
and other stream processors were originally developed for inten-
sive media applications and thus advances in the performance and
general purpose programmability of these processors have hith-
erto benefited applications that exhibit computational similari-
ties to graphics applications, namely high data parallelism, high
computational intensity, and data locality. However, many the-
oretically optimal graph algorithms exhibit few of these proper-
ties. Such algorithms often use efficient data structures storing as
little redundant information as possible, resulting in highly un-
structured data and un-coalesced memory access making them
less-than-ideal candidates for streaming processor manipulations.
Nevertheless, given the wide applicability of graph-based ap-
proaches, themassive parallelismafforded by today’s graphics pro-
cessors is too compelling to ignore; currentGPUs support hundreds
of cores per chip and even future CPUs will be manycore.

Our approach aims to exploit the structure of the input graphs
and specifically their partitioning properties to parallelize shortest
path computations. The approach will be especially efficient if the
input graph has a good separator, which means (informally) that it
can be divided into two ormore equal parts removing o(n) vertices
or edges, where n is the number of the vertices of the graph. Such
graphs are frequently seen in road networks, geometric networks
and social networks [1]; all planar graphs also satisfy this prop-
erty [15]. To harness the parallel computing power for solving the
path problem on such graphs, we partition the input graphs into an
appropriate number of parts and solve the APSP on each part and
then use the partial solutions to compute the distances between all
pairs of vertices in the graph. We describe two algorithms based

1 Since there can be no shortest path between vertices on a negative cycle, we
assume hereafter that graphs considered in this paper have no negative cycles.

on our approach. Our first algorithm only uses Floyd–Warshall re-
currence and can therefore work with graphs with negative edges.
Our second algorithm uses a Dijkstra approach for some computa-
tions and can thus only be used with positive edge weight graphs.
Both algorithms have near optimal complexity in terms of the total
number of operations,while theirmatrix-based structure is regular
enough to allow for efficient parallel implementation on the GPUs.
By applying a divide-and-conquer approach, we are able to make
use of multi-node GPU clusters, resulting in more than an order
of magnitude speedup over fastest known (Dijkstra-based) GPU
implementation and a two-fold speedup over a parallel Dijkstra-
based CPU implementation.

In what follows, Section 2 describes related work; in Section 3,
we detail the principles of our approach; Section 4 focuses on the
structure of the data and the computations and also describes how
our first algorithm, master/slave model, is implemented on large
multi GPU clusters. Section 5 is dedicated to another (decentral-
ized) algorithm that allows to reduce the communications. The-
oretical analysis of work and time complexity and experimental
results illustrate the efficiency of the algorithms for the class of
planar graphs.

2. Related work

When considering a distributed GPU implementation, both
Dijkstra and Floyd–Warshall’s approaches have advantages and
drawbacks. Though slower for sparse graph, a Floyd–Warshall
approach has the advantage of having regular data access patterns
that are identical to those of amatrixmultiplication. The amount of
computations required for a given graph, using a Floyd–Warshall
approach, solely depends on the number of vertices in the graph;
therefore, balancing workloads between different processing units
can be achieved easily. Dijkstra’s approach ismuch faster for sparse
graphs but, to achieve best performance, requires complex data
structures which are difficult to implement efficiently on a GPU.

Implementing parallel solvers for the APSP problem is an active
field of research. Harish and Narayanan [9] proposed GPU imple-
mentations of both the Dijkstra and Floyd–Warshall algorithms to
solve the APSP problem and compared them to parallel CPU im-
plementations. Both approaches however require that the whole
graph fits in a single GPU’s memory. They report solving APSP for
a 100k vertex graph in around 22 min on a single GPU. A cache-
efficient parallel, blocked version of the Floyd–Warshall algorithm
for solving the APSP problem in GPUs is described in [12]. While
the graphs mentioned in [12] are larger than what would fit onto
GPU on-board memory, the largest graph instances described in
the paper are still only around 10k vertices.

Buluç et al. [2] proposed a blocked-recursive Floyd–Warshall
approach. Their implementation, running on a single GPU, shows a
speedup of 17–45 when compared to a parallel CPU implementa-
tion and outperforms both GPU implementations from [9]. Their
blocked-recursive implementation also requires that the entire
graph fits in the GPU’s global memory; therefore, they only report
timings for graphs with up to 8k vertices. Okuyama et al. [21] pro-
posed an improvement over the GPU implementation of Dijkstra
for APSP from [9] by caching data in on-chip memory and exhibit-
ing a higher level of parallelism. Their approach showed a speedup
of 2.8–13 over Dijkstra’s SSSP-based method of [9]. Matsumoto
et al. [17] also proposed a blocked Floyd–Warshall algorithm that
they implemented for computations on a single GPU and a mul-
ticore CPU simultaneously. Their implementation handles graphs
with up to 32k and achieves near peak performance. Only Ortega-
Arranz et al. [22] report solving APSP on large graphs— up to 1024k
vertices. Using an SSSP-based Dijkstra approach, their implemen-
tation runs on a multicore CPU and up to 2 GPUs simultaneously.
Recent experimental work on parallel algorithms for solving just

Download English Version:

https://daneshyari.com/en/article/431438

Download Persian Version:

https://daneshyari.com/article/431438

Daneshyari.com

https://daneshyari.com/en/article/431438
https://daneshyari.com/article/431438
https://daneshyari.com

