
J. Parallel Distrib. Comput. 78 (2015) 6–24

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A load balanced directory for distributed shared memory objects✩

Gokarna Sharma ∗, Costas Busch
School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA

h i g h l i g h t s

• A novel load balanced directory for distributed shared memory objects is proposed.
• It is suitable for d-dimensional mesh-based topologies with n nodes and d ≥ 2.
• It attains O(d2 log n) load approximation and O(d log n) stretch approximation.
• Experimental results confirm the load balancing and low stretch benefits.
• Previous protocols only considered stretch and cannot control network load.

a r t i c l e i n f o

Article history:
Received 29 May 2014
Received in revised form
14 October 2014
Accepted 12 February 2015
Available online 23 February 2015

Keywords:
Distributed systems
Distributed directory
Shared object
Cache-coherence
Mesh network
Load balancing
Stretch
Oblivious routing

a b s t r a c t

We present MultiBend, a novel distributed directory protocol for shared objects, suitable for large-scale
distributed shared memory systems that use d-dimensional mesh-based topologies, where d ≥ 2. Each
shared object has an owner node that can modify its value. The ownership may change by moving the
object from one node to another in response tomove requests. The value of an object can be read by other
nodes with lookup requests. MultiBend balances the load of the network edges and nodes by forwarding
eachmove or lookup request and response along a path consisting of multiple bends in themesh. Using an
oblivious routing protocol, the multi-bend paths have a small number of overlaps which helps to reduce
the maximum edge and node utilization to achieve load balancing. At the same time,MultiBend achieves
small stretch for the total path length of any sequence ofmove requests, compared to the total optimal path
length. MultiBend guarantees O(d2 log n) approximation for the load, and O(d log n) approximation for
the stretch due tomove requests, where n is the number of nodes in the mesh network. It also guarantees
O(d2) approximation for the stretch of lookup requests. We evaluate MultiBend with simulations using
various sequences of move and lookup operations in a 16 × 16 nodes 2-dimensional mesh network. We
compare the simulation results to other protocols which are not tailored for load balancing and we find
that our protocol is better by as much as the factor of 6.85 in terms of congestion in the worst-case. To the
best of our knowledge, this is the first distributed shared memory directory protocol that considers the
network load balancing aspect and achieves good approximation ratio for both the load and the stretch.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Manydistributed systems rely on some concept of objectswhich
are the individual entries at the shared memory available in these
distributed systems. An object can be shared by multiple tasks on
different network nodes. A task is a sequence of shared memory
operations (i.e., reads or writes), and the nodes are the processors

✩ This paper extends a preliminary version that appears in the Proceedings of the
18th International European Conference on Parallel and Distributed Computing (Euro-
Par 2012) Sharma and Busch (2012) [24].
∗ Corresponding author.

E-mail addresses: gokarna@csc.lsu.edu (G. Sharma), busch@csc.lsu.edu
(C. Busch).

in distributed systems which communicate through a message
passing environment. We assume that each processor has its own
cache, where copies of objects reside. When a task running at
a processor node issues a read or write operation for a shared
memory location, the data object at that location is loaded into the
processor-local cache.

We consider distributed systems where shared objects are
moved to those nodes that need them. In other words, tasks at net-
work nodes can only operate on local shared objects and, if remote
shared objects are required, the task must communicate with one
ormore remote processor nodes. Somedistributed cache-coherence
mechanism should ensure that shared objects remain consistent,
i.e., writing to an object automatically locates and invalidates other
cached copies of that object. These mechanisms are widely known
as distributed directory protocols (DDPs) in the literature, e.g., [9].

http://dx.doi.org/10.1016/j.jpdc.2015.02.002
0743-7315/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2015.02.002
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2015.02.002&domain=pdf
mailto:gokarna@csc.lsu.edu
mailto:busch@csc.lsu.edu
http://dx.doi.org/10.1016/j.jpdc.2015.02.002


G. Sharma, C. Busch / J. Parallel Distrib. Comput. 78 (2015) 6–24 7

A DDP typically supports three kinds of operations: (i) publish op-
eration, which is used by a node that creates an object to enable
other nodes to find that object; (ii) lookup operation, which is used
by a node to search for an object and retrieve a copy if the object
exists; and (iii)move operation, which is used by a node to retrieve
an object from another node. Any DDP guarantees that each lookup
andmove to the shared object is individually atomic.

DDPs have a long history of research. They have widely been
used in distributed shared memory implementations in multi-
cache systems, e.g., [9,2,8,11]. Very recently, DDPs have been
studied for transactional memory implementations in large-scale
distributed systems, e.g., [5,14,24,26,28], and are called distributed
transactional memory consistency protocols (DTMs). DTMs act sim-
ilarly as of DDPs when there is one shared object in the system or
when all the transactions1 in the system are operating on only one
shared object (not necessarily the same shared object). However, in
the case when transactions are operating on many shared objects,
they may conflict with each other in accessing the shared objects.
The conflicts between any two transactions are resolved either by
aborting a transaction or by postponing operations of one transac-
tion for a fixed duration, so that the other transaction gets chance
to commit. In other words, in addition to the capabilities of DDPs,
DTMs should have the mechanism to support aborts of transac-
tions. This is generally provided with the help of a globally con-
sistent contention management policy which determines which
transaction to abort among the conflicting transactions. A number
of policies are proposed in the literature, e.g. [12,4,22]. Note that
if more than two transactions are conflicting in accessing multiple
objects then the contention management policy should guarantee
that there does not occur any deadlock and livelock of transactions.
DTMs that are proposed in the literature [5,14,26,28] are basically
DDPs as they do not provide full support for transaction aborts and
most of them consider only one shared object.

Typically the performance of a DDP is measured with respect
to the communication cost, which is the total number of messages
sent in the network. The total number of messages sent by an op-
eration is measured with respect to the number of edges of the
network used by that operation. The communication cost for an
operation (respectively for a set of operations) is compared to the
optimal communication cost for that operation (respectively for
that set of operations) to provide an approximation ratio (or a
competitive ratio) on communication cost, which is generally re-
ferred to as stretch. In the context of DDPs, previous approaches:
Arrow [11], Relay [28], Combine [5], Ballistic [14], and Spiral [26],
focused only on stretch bounds for various network topologies and
they do not control the congestion. Moreover, DDPs designed and
used in [9,2,8] have not been analyzed even for the stretch. The
network congestion can also affect the overall performance of the
algorithm and sometimes it is a major bottleneck. Wemeasure the
network congestion as theworst node or edge utilization (themax-
imum number of times the object requests use any edge or node in
the network while accessing the shared object).

1.1. Problem statement

Given a network and a set E = {r0, r1, . . . , rl} of l + 1 object
operations (l does not need to be known and the bounds are
independent of l), where r0 is the initial publish operation and the
rest are the subsequent move operations. DDPs organize object
operations into a total order (or a ‘‘distributed queue’’) [11]. Note
that we are focusing here on move operations only; the reason

1 A transaction represents a sequence of shared memory operations (i.e., reads
and writes) that are all performed atomically.

behind not having lookup operations in E is that lookup operation
do not change the way DDPs form distributed queues, i.e., they do
not modify the queue formed by move operations. Each operation
ri has a source node si and a destination node ti. (Source nodesmay
be different than object creating nodes; object creating nodes and
the nodes that currently have the objects are denoted by owner
nodes.) In the DDP problem, the destination node of an operation
ri1 is the source node of another operation ri2 in the total order,
where the total order is a permutation of the requests in E . That is,
the destination node for each operation is not known beforehand
and the DDP should find out the destination node online while in
execution. The goal is to find a path pi from si to ti, for every request
ri, whileminimizing both themaximum congestion along any edge
e (any node v) in the network and the communication cost (the
number of edges e that pi uses). Formally,

• Load balancing: Minimize total edge congestion C = maxe |{i :
e ∈ pi}| and total node congestion Cn = maxv |{i : v ∈ pi}|. The
congestion C (Cn) can be compared to the optimal congestion C∗
(C∗n ) that is attainable by any DDP to provide an approximation
ratio on congestion for any edge e (any node v). Congestion
on network edges and nodes can adversely affect the overall
performance of the algorithm, especially in systems with
limited bandwidth and/or in systemswith limited computation
power. For example, in sensor networks congestion can lead
to random dropping of data and dramatic increase in energy
consumption [15]. Congestion minimization is very important
because it allows to evenly utilize available network resources
(edges and nodes), avoiding the chance of the system being
bottleneck due to some ‘‘hotspot’’ resources. This is done by
reducing the communication/computation load on network
edges and nodes through load distribution optimization.
• Stretch: Minimize total communication cost A(E) =

l
i=1 |pi|,

where |pi| is the number of edges that the path pi of the request
ri uses. The total communication cost A(E) can be compared to
the cost A∗(E) of an optimal offline ordering algorithmOPT that
has complete knowledge about all the requests in E to provide
the stretch, i.e., the stretch is the ratio A(E)/A∗(E). We are
interested to minimize maxE A(E)/A∗(E), the maximum ratio
over all sets of operations E .

1.2. Contributions

We presentMultiBend, a DDP for shared objects, that is suitable
for d-dimensional mesh networks, where d ≥ 2, and is load
balanced in the sense that it has low congestion (maximum edge
utilization), and at the same time maintains low stretch. Mesh
networks are appealing due to their use in parallel and distributed
computing [17,1,10,23]. Mesh networks are cost-effective and
provide great performance solutions for diverse applications,
simple expansion for future growth, and scalable connection
properties. Mesh topologies are used as an underlying backbone
network in many distributed clusters and supercomputers. For
example, 65,000 nodes of IBM Blue Gene/L are interconnected as
a 64 × 32 × 32 3-dimensional mesh or torus [1]. Recently, IBM
Blue Gene/Q integrated 5-dimensional torus [10], where a torus is
a variation of the mesh.

MultiBend combines in a novel way a DDP protocol with a
routing algorithm to achieve low stretch and load balancing. The
low stretch is achieved through a hierarchical directory which we
first introduced in [26] for general networks and we adapted here
for the mesh network. The load balancing is achieved through
an oblivious routing approach (e.g., [17,6,7]) tailored to the d-
dimensional mesh; in particular, we use the oblivious routing
algorithm in Busch et al. [7]. A routing algorithm is oblivious if every
path that is selected for each request to route to its destination



Download English Version:

https://daneshyari.com/en/article/431449

Download Persian Version:

https://daneshyari.com/article/431449

Daneshyari.com

https://daneshyari.com/en/article/431449
https://daneshyari.com/article/431449
https://daneshyari.com

