
J. Parallel Distrib. Comput. 78 (2015) 53–64

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Flow updating: Fault-tolerant aggregation for dynamic networks
Paulo Jesus ∗, Carlos Baquero ∗, Paulo Sérgio Almeida ∗

HASLab, INESC TEC and Universidade do Minho, Portugal

h i g h l i g h t s

• We describe a fault-tolerant data aggregation algorithm for dynamic networks.
• Experimental results show it outperforms previous averaging techniques.
• It self-adapts to churn and input value changes.
• It supports node crashes and high levels of message loss.
• It works in asynchronous settings.

a r t i c l e i n f o

Article history:
Received 14 October 2014
Received in revised form
31 January 2015
Accepted 16 February 2015
Available online 24 February 2015

Keywords:
Distributed algorithms
Data aggregation
In-network aggregation
Fault-tolerance
Dynamic networks

a b s t r a c t

Data aggregation is a fundamental building block of modern distributed systems. Averaging based ap-
proaches, commonly designated gossip-based, are an important class of aggregation algorithms as they
allow all nodes to produce a result, converge to any required accuracy, and work independently from the
network topology. However, existing approaches exhibit many dependability issues when used in faulty
and dynamic environments. This paper describes and evaluates a fault tolerant distributed aggregation
technique, Flow Updating, which overcomes the problems in previous averaging approaches and is able
to operate on faulty dynamic networks. Experimental results show that this novel approach outperforms
previous averaging algorithms; it self-adapts to churn and input value changes without requiring any
periodic restart, supporting node crashes and high levels of message loss, and works in asynchronous
networks. Realistic concerns have been taken into account in evaluating Flow Updating, like the use of
unreliable failure detectors and asynchrony, targeting its application to realistic environments.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

With the advent of multi-hop ad-hoc networks, sensor net-
works and large-scale overlay networks, there is a demand for tools
that can abstract meaningful system properties from given assem-
blies of nodes. In such settings, aggregation plays an essential role
in the design of distributed applications [32], allowing the determi-
nation of network-wide properties like network size, total storage
capacity, average load, andmajorities. Although apparently simple,
in practice aggregation has revealed itself to be a non-trivial prob-
lem in distributed settings, where no single element holds a global
view of the whole system.

In the recent years, several algorithms have addressed the prob-
lem with diverse approaches, exhibiting different characteristics
in terms of accuracy, time and communication trade-offs. A useful

∗ Corresponding authors.
E-mail addresses: pcoj@di.uminho.pt (P. Jesus), cbm@di.uminho.pt

(C. Baquero), psa@di.uminho.pt (P.S. Almeida).

class of aggregation algorithms is based on averaging techniques.
Such algorithms start from a set of input values spread across the
network nodes, and iteratively average their values with neigh-
bors. Eventually all nodes will converge to the same value and can
estimate some useful metric.

Averaging techniques allow the derivation of different aggre-
gation functions besides average (like counting and summing), ac-
cording to the initial combinations of input values. For example,
if one node starts with input 1 and all other nodes with input 0,
eventually all nodes will end up with the same average 1/n and
the network size n can be directly estimated by all of them [14].

Distributed data aggregation becomes particularly difficult to
achieve when faults are taken into account (i.e., message loss and
node crashes), and especially if dynamic settings are considered
(nodes arriving/leaving). Few have approached the problem under
these settings [27,25,11,24,15,23], proving to be hard to efficiently
obtain accurate and reliable aggregation results in faulty and
dynamic environments.

This paper extends the previous work on Flow Updating [16,19],
a novel averaging approach, by presenting asynchronous versions

http://dx.doi.org/10.1016/j.jpdc.2015.02.003
0743-7315/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2015.02.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2015.02.003&domain=pdf
mailto:pcoj@di.uminho.pt
mailto:cbm@di.uminho.pt
mailto:psa@di.uminho.pt
http://dx.doi.org/10.1016/j.jpdc.2015.02.003


54 P. Jesus et al. / J. Parallel Distrib. Comput. 78 (2015) 53–64

of the algorithmandproviding extensive evaluation results consid-
ering practical concerns such as: dynamic input value changes, re-
alistic failure detectors and asynchronous execution with message
loss. The evaluation shows that: it outperforms classic averaging-
based aggregation algorithms; it is fault-tolerant (to both message
loss and node crashes); it is able to efficiently support network dy-
namism (churn); it can be usedwith realistic failure detectors (and
shows how these should be tuned); it can continuously aggregate
under changes of input values with no need for a restart; it can be
used in asynchronous settings, with variable transmission latency
(and shows how timeouts can be chosen for a typical latency dis-
tribution, in a practical implementation).

The remainder of this paper is organized as follows. We briefly
refer to the related work on aggregation algorithms in Section 2.
Section 3 describes Flow Updating, a robust distributed aggregation
algorithm able to work in dynamic networks. In Section 4, we eval-
uate the proposed approach. Finally, wemake some concluding re-
marks in Section 5.

2. Related work

Classic approaches, like TAG [27], perform a tree-based aggre-
gation where partial aggregates are successively computed from
child nodes to their parents until the root of the aggregation tree
is reached (requiring the existence of a specific routing topology).
This kind of aggregation technique is often applied in practice to
Wireless Sensor Networks (WSN) [28]. Other tree-based aggrega-
tion approaches can be found in [25,5,33]. We should point out
that, although being energy-efficient, the reliability of these ap-
proaches may be strongly affected by the inherent presence of
single-points of failure in the aggregation structure. Moreover, in
order to operate on dynamic settings, a tree maintenance proto-
col is required to handle node arrival/departure, which may lead
to temporary disconnection during the parent switching process.

Alternative aggregation algorithms based on the application of
probabilistic methods can also be found in the literature. This is
the case of Extrema Propagation [4] and COMP [31], which reduce
the computation of an aggregation function to the determination of
theminimum/maximum of a collection of random numbers. These
techniques tend to emphasize speed, being less accurate than av-
eraging approaches.

Specialized probabilistic algorithms can also be used to com-
pute specific aggregation functions, such as count (e.g., to deter-
mine the network size). This type of algorithm essentially relies
on the results from a sampling process to produce an approxi-
mate estimate of the aggregate, using properties of randomwalks,
capture–recapture methods and other statistic tools [30,11,29,24].
These approaches can provide some flexibility in dynamic settings,
but are not accurate. The estimation error, present even in fault-
free settings, depends on the quality of the collected sample, and
the used estimator. Moreover, a sample is made available at a sin-
gle node, and it can take several rounds to collect one sample. For
example, the estimation error can reach 20% in Sample & Collide
[30,11], and a single sampling step takes d̄T (where d̄ is the average
connection degree and T is a timer value that must be sufficiently
large to provide a good sample quality) andmust be repeated until
l new samples have been observed.

The averaging approach to distributed aggregation is based on
an iterative averaging process between small sets of nodes [22,15,
14,7,35]. Eventually, all nodes will converge to the correct value by
performing the averaging process across all the networks. These
approaches are independent from the network routing topology,
are often based on a gossip (or epidemic) communication scheme,
and are able to produce an estimate of the resulting aggregate
at every network node. Averaging techniques are considered to
be robust and accurate (converge over time) when compared to

other aggregation techniques, but in practice they exhibit rele-
vant problems that have been overlooked, not supportingmessage
loss nor node crashes (see [17] for more details). Moreover, most
existing approaches rely on inefficient strategies to handle net-
work dynamism, like the use of a restart mechanism that looses
all progress.

A technique which combines the basic idea from Flow Up-
dating with mass distribution is the MDFU algorithm, presented
in [1]. This one keeps a pair of incoming–outgoing flow-like val-
ues, but which increase unboundedly. It inherits the convergence
properties of the underlying mass distribution, while also being
fault-tolerant and allowing input value changes. Another algo-
rithm which keeps a pair of incoming–outgoing values that sum-
marize past messages is the more recent Limosense [10], which
adapts the classic Push-Sum [22], inheriting its convergence prop-
erties, while being also fault-tolerant and allowing input value
changes and network dynamism. Recently, an algorithm named
Push-Flow that combines Flow Updating with Push-Sum was de-
scribed in [12].

A comprehensive survey about distributed data aggregation
algorithms is found in [20].

3. Flow updating

Flow Updating [16,19] is a recent averaging based aggregation
approach, which works for any network topology and tolerates
faults. Like existing gossip-based approaches, it averages values
iteratively during the aggregation process towards converging to
the global network average. But unlike them, it is based on the
concept of flow, providing unique fault-tolerant characteristics by
performing idempotent updates.

The key idea in Flow Updating is to use the flow concept from
graph theory (which serves as an abstraction for many things like
water flow or electric current), and instead of storing in each node
the current estimate in a variable, compute it from the input value
and the contribution of the flows along edges to the neighbors:

ei = vi −

j∈ni

fij. (1)

This can be read as: the current estimate ei in a node i is the
input value vi less the flows fij from the node to each neighbor
j. The algorithm aims to enforce and explore the skew symmetry
property of the flow along an edge, i.e., fij = −fji.

The essence of the algorithm is: each node i stores the flow fij
to each neighbor j; node i sends flow fij to j in a message; a node j
receiving fij updates its own fji with −fij. Messages simply update
flows, being idempotent; the value in a subsequent message
overwrites the previous one, it does not add to the previous value.
If the skew symmetry of flows holds, the sum of the estimates for
all nodes (the global mass) will remain constant:
i∈V

ei =


i∈V


vi −


j∈ni

fij


=


i∈V

vi. (2)

The intuition is that if a message is lost the skew symmetry is
temporarily broken, but as long as a subsequent message arrives,
it re-establishes the symmetry. The reality is somewhat more
complex: due to concurrent execution, messages between two
nodes along a link may cross each other and both nodes may
update their flows concurrently; therefore, the symmetry may not
hold, but what happens is that fij+ fji converges to 0, and the global
mass converges to the sumof the input values of all nodes.Message
loss only delays convergence; it does not impact the convergence
direction towards the correct value.

Enforcing the skew symmetry of flows along edges through
idempotent messages is what confers Flow Updating its unique



Download English Version:

https://daneshyari.com/en/article/431452

Download Persian Version:

https://daneshyari.com/article/431452

Daneshyari.com

https://daneshyari.com/en/article/431452
https://daneshyari.com/article/431452
https://daneshyari.com

