
J. Parallel Distrib. Comput. 74 (2014) 2687–2698

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Streaming data analytics via message passing with application to
graph algorithms
Steven J. Plimpton ∗, Tim Shead
Sandia National Laboratories, Albuquerque, NM, United States

h i g h l i g h t s

• A framework for processing streaming data in parallel in a distributed-memory manner is described.
• The framework performs message-passing to achieve parallelism, using either an MPI or sockets (ZMQ) backend.
• Performance of MPI versus sockets (ZMQ) is benchmarked for communicating large numbers of small messages.
• Three algorithms are presented for processing streaming graph edges to deduce structure and patterns in the graphs.

a r t i c l e i n f o

Article history:
Received 25 October 2012
Received in revised form
8 November 2013
Accepted 11 April 2014
Available online 6 May 2014

Keywords:
Streaming data
Graph algorithms
Message passing
MPI
Sockets
MapReduce

a b s t r a c t

The need to process streaming data, which arrives continuously at high-volume in real-time, arises in
a variety of contexts including data produced by experiments, collections of environmental or network
sensors, and running simulations. Streaming data can also be formulated as queries or transactions which
operate on a large dynamic data store, e.g. a distributed database.

We describe a lightweight, portable framework named PHISH which provides a communication
model enabling a set of independent processes to compute on a stream of data in a distributed-
memory parallel manner. Datums are routed between processes in patterns defined by the application.
PHISH provides multiple communication backends including MPI and sockets/ZMQ. The former means
streaming computations can be run on any parallel machine which supports MPI; the latter allows them
to run on a heterogeneous, geographically dispersed network of machines.

We illustrate how streaming MapReduce operations can be implemented using the PHISH
communication model, and describe streaming versions of three algorithms for large, sparse graph
analytics: triangle enumeration, sub-graph isomorphism matching, and connected component finding.
We also provide benchmark timings comparingMPI and socket performance for several kernel operations
useful in streaming algorithms.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Streaming data is produced continuously, in real-time, making
streaming computation different frommore familiar numerical, in-
formatics, and physical simulation computations, which typically
read and write archived data to a file system. The stream may be
infinite, and the computations can be resource-constrained by the
stream rate or by available memory [14,10]. For example, it may
not be possible for a computation to ‘‘see’’ a datum in the stream
more than once. A calculation on a datum may need to finish be-
fore the next datum arrives, in order to ‘‘keep up’’ with the stream.

∗ Corresponding author.
E-mail address: sjplimp@sandia.gov (S.J. Plimpton).

While attributes of previously seen datums can be stored, such
‘‘state’’ information may need to fit in memory (for speed of ac-
cess), or be of finite size, even if the stream of data is infinite. The
latter constraint typically requires amechanism for ‘‘aging’’ or ‘‘ex-
piring’’ state information.

There are at least two motivations for computing on streaming
data in parallel: (1) to enable processing of higher stream rates and
(2) to store more state information about the stream across the
aggregate memory of many processors. Our focus in this paper is
on a distributed-memory parallel approach to stream processing,
since commodity clusters are cheap and ubiquitous, and we wish
to go beyond the memory limits of a single shared-memory node.

A natural paradigm for processing streaming data is to view
the data as a sequence of individual datums which ‘‘flow’’ through
a collection of programs. Each program performs a specific

http://dx.doi.org/10.1016/j.jpdc.2014.04.001
0743-7315/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2014.04.001
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.04.001&domain=pdf
mailto:sjplimp@sandia.gov
http://dx.doi.org/10.1016/j.jpdc.2014.04.001


2688 S.J. Plimpton, T. Shead / J. Parallel Distrib. Comput. 74 (2014) 2687–2698

computation on each datum it receives. It may choose to retrieve
state information for previous datums, store state for the current
datum, and/or pass the datum along as-is or in altered form to the
next program in the stream. By connecting a collection of programs
together in a specified topology, which may be a linear chain or
a branching network with loops, an algorithm is defined which
performs an overall computation on the stream.

On a shared-memory machine, each program could be a thread
which shares state with other threads via shared memory. For
distributed-memory platforms, each program is an independent
process with its own private memory, and datums are exchanged
between processes via some form of message passing. This incurs
overhead which may limit the stream rates that can be processed,
since datums must be copied from the memory of one process
into the memory of another via a message; however, distributed
memory parallelism has the other advantages discussed above.

We are aware of several software packages that work with
streaming data. Some are extensions to the MapReduce model [6]
with add-ons to Hadoop [9] that enable incremental map reduce
on streaming data with intermediate results made available con-
tinuously [5,13]. Other packages implement their own stream-
ing framework, such as the S4 platform [15] and the Storm
package [20], recently released by Twitter. The former distributes
the stream to processing elements based on key hashing, similar to
aMapReduce computation, andwas developed for datamining and
machine learning applications. The latter is advertised as a real-
time Hadoop, for performing parallel computations continuously
on high-rate streaming data, including but not limited to stream-
ing MapReduce operations.

There are also commercial software products that provide
stream processing capability. IBM has its InfoSphere Streams sys-
tem [11], designed to integrate data from thousands of real-time
sources and perform analyses on it. EsperTech has a product Esper
[7] which computes on a stream of ‘‘events’’ to match patterns and
extract meaning. SQLstream [19] is a company devoted to process-
ing real-time data; its software enables SQL queries to be made on
streaming data in a time-windowed fashion.

We also note that the dataflow model [12], where data flows
through a directed graph of processes, is not unique to informatics
data. The open-source Titan toolkit [23], built on top of VTK [22], is
a visualization and data analytics engine, which allows the user to
build (through a GUI) a network of interconnected computational
kernels, which is then invoked to process simulation or other data
that is pipelined through the network. Often this is archived data,
but some streaming capabilities have recently been added to Titan.

In this paper we describe a new software package – PHISH
– which is detailed in the next section. PHISH is a lightweight,
portable framework written to simplify the design and develop-
ment of parallel streaming algorithms, including but not limited
to the graph algorithms described in Section 3. PHISH defines a
flexible streaming communication model while leaving the details
of data storage and computation to the algorithm developer. This
makes PHISH ideal for the needs of research and development,
rather than a turn-key or production system.

Because we needed a means of running streaming algorithms
on a wide variety of parallel machines and clusters for our own
research, and further wished to compare the performance of dif-
ferent networking technologies, the PHISH communication model
has been implemented on top of two backend messaging libraries,
the ubiquitousmessage-passing interface (MPI) library [8], and the
socket-based open-source φMQ library [24], (pronounced zero-
MQ and hereafter referred to as ZMQ). The MPI backend al-
lows PHISH programs to run on virtually any monolithic parallel
machine. The ZMQ backend can be used to run on a distributed
network of heterogeneous machines, including hosts that are geo-
graphically dispersed or deployed in a cloud. The design of PHISH

explicitly allows for the possibility of additional backends, to
support experimentation with alternate networking technologies,
e.g. sophisticated new interconnects.

Of the packages discussed above, PHISH is most similar to
Storm, which also uses ZMQ for socket-based communications.
Though we began work on PHISH before Storm was released,
the model the two packages use for connecting computational
processes via communication patterns to enable parallelism is
similar. Storm has additional features for fault tolerance and guar-
anteeing that each datum in a stream is processed, which PHISH
does not provide. For theMPI-based parallelmachineswe usemost
often, these issues are not as important, and the current MPI stan-
dard (3.0) does not have support for fault tolerance. Storm places
some limitations on how data that is shared among processes is
packaged, when used with certain programming languages. PHISH
imposes no structure on the data exchanged among processes re-
gardless of programming language, and can be run with alternate
communication backends, as outlined above.

In the next section we give a brief description of the PHISH
framework and its features, and illustrate with examples how
both traditional and streaming MapReduce computations can
be performed in parallel. In Section 3, we outline three graph
algorithms implemented using PHISH that operate on edges
arriving as a stream of data. Finally, in Section 4 we provide
benchmark timings for prototypical stream operations, running
on a traditional parallel HPC platform, using both the MPI and
socket options in PHISH. The results are ameasure of themaximum
stream rates that PHISH can process.

2. PHISH pheatures

PHISH, which stands for Parallel Harness for Informatic Stream
Hashing, is a lightweight framework, written in a few thousand
lines of C, C++, and Python code. Aside from the acronym, we chose
the name because ‘‘phish’’ swim in a stream (of data in this case).

The framework has two parts. The first is a library which can
be used by programs written in a variety of languages (we supply
bindings for C, C++, and Python). We refer to a program that uses
the PHISH library as a ‘‘minnow’’ because such programs are typ-
ically (though not necessarily) small, performing a single, specific
operation on individual datums in the stream. Of course, nothing
in the library prevents minnows from growing in complexity (per-
haps becoming sharks or evenwhales!), butwe find in practice that
PHISH computations work best and are easiest to develop and de-
bug when each type of minnow focuses on doing one thing well.
Writing aminnow simply requires registering one ormore callback
functionswith the library thatwill be invokedwhen datums arrive.
Additional library functions are used to unpack datums into their
constituent fields, and pack new datums to be sent downstream to
other minnows. The PHISH library handles the actual communica-
tion of a datum from one minnow to another, via the included MPI
or ZMQ back-ends.

The second part of the framework is a pre-processing tool
named ‘‘bait’’ which enables a computation using one or more
minnows to be specified. The bait tool reads a simple input script
with 3 kinds of commands. ‘‘Minnow’’ commands specify which
minnow executables to launch, and any command-line arguments
they require. ‘‘School’’ commands specify how many minnows of
each type to launch and, optionally, how to assign them to physical
processors. ‘‘Hook’’ commands define a communication pattern
used to route datums between minnows in schools. Examples of
such patterns are ‘‘paired’’ (each minnow sends to one receiver),
‘‘roundrobin’’ (send to every receiver in round-robin order),
‘‘hashed’’ (send to a specific receiver based on a hash operation),
and ‘‘bcast’’ (send to all receivers). The ‘‘bait’’ tool converts the
input script into a file suitable for launching all the minnow



Download English Version:

https://daneshyari.com/en/article/431465

Download Persian Version:

https://daneshyari.com/article/431465

Daneshyari.com

https://daneshyari.com/en/article/431465
https://daneshyari.com/article/431465
https://daneshyari.com

