
J. Parallel Distrib. Comput. 74 (2014) 1789–1801

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Efficient fault-tolerant collision-free data aggregation scheduling for
wireless sensor networks✩,✩✩

Arshad Jhumka ∗, Matthew Bradbury, Sain Saginbekov
Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK

h i g h l i g h t s

• We formalise the problem of data aggregation scheduling and prove some impossibility results.
• We develop an efficient modular algorithm that solves stabilising data aggregation scheduling in the presence of crash failures.
• We show, through simulation and an actual deployment, the viability of our approach.

a r t i c l e i n f o

Article history:
Received 7 February 2013
Received in revised form
22 July 2013
Accepted 24 September 2013
Available online 11 October 2013

Keywords:
Wireless sensor networks
Data aggregation scheduling
Fault tolerance
Crashes
Collision freedom
Impossibility
Correctness

a b s t r a c t

This paper investigates the design of fault-tolerant TDMA-based data aggregation scheduling (DAS)
protocols for wireless sensor networks (WSNs). DAS is a fundamental pattern of communication in
wireless sensor networks where sensor nodes aggregate and relay data to a sink node. However, any
such DAS protocol needs to be cognisant of the fact that crash failures can occur. We make the following
contributions: (i) we identify a necessary condition to solve the DAS problem, (ii) we introduce a strong
and weak version of the DAS problem, (iii) we show several impossibility results due to the crash failures,
(iv) we develop a modular local algorithm that solves stabilising weak DAS and (v) we show, through
simulations and an actual deployment on a small testbed, how specific instantiations of parameters can
lead to the algorithm achieving very efficient stabilisation.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Data gathering is a basic capability expected of any wireless
sensor network (WSN). The usual way of performing data gath-
ering is to have nodes send their measurements (possibly over
multiple hops) to a particular node called a sink. This type of com-
munication, called convergecast, is fundamental to WSNs. Con-
vergecast generally works by constructing a logical tree (called a
convergecast tree) on top of the physical topology,with the sink lo-
cated at the root, and data is then routed to the sink along the tree.
However, to save energy, the data is typically aggregated along

✩ This work was supported by a grant from the University of Warwick.
✩✩ This is an extended version of a paper [15] thatwas published in the Proceedings
of the Symposium on Reliable Distributed Systems (SRDS), 2010.
∗ Corresponding author.

E-mail addresses: arshad@dcs.warwick.ac.uk, hajhumka@gmail.com
(A. Jhumka), M.Bradbury@warwick.ac.uk (M. Bradbury), sain@dcs.warwick.ac.uk
(S. Saginbekov).

the route at specific nodes. This means that an aggregator node
needs to have all the values from its children before aggregating
the data. However, due to the broadcast nature of the communica-
tion medium, data transmissions need to be mediated among the
children (and possibly other nodes) to avoidmessage collisions and
interference, events that typically lead to energy exhaustion and
which could also bias the aggregation.

Mediating these transmissions can be achieved through the use
of an appropriate media access control (MAC) protocol. For WSN
applications that need fast response times (e.g., disaster recovery),
timeliness is of utmost importance. To this end, we investigate
Time Division Multiple Access (TDMA)-based MAC protocols for data
aggregation scheduling, in which each node is allocated a specific
time slot in which it can transmit its data. Another advantage
of a TDMA schedule for WSNs is that the transceivers can be
turned on only when needed, thus saving energy. There exist
several algorithms for convergecast in multi-hop radio networks,
e.g., [18,13,19] that can be used for WSNs. A common pattern
in TDMA-based convergecast algorithms is the decomposition of

0743-7315/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpdc.2013.09.011

http://dx.doi.org/10.1016/j.jpdc.2013.09.011
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2013.09.011&domain=pdf
mailto:arshad@dcs.warwick.ac.uk
mailto:hajhumka@gmail.com
mailto:M.Bradbury@warwick.ac.uk
mailto:sain@dcs.warwick.ac.uk
http://dx.doi.org/10.1016/j.jpdc.2013.09.011


1790 A. Jhumka et al. / J. Parallel Distrib. Comput. 74 (2014) 1789–1801

the problem into two independent subproblems: (i) a logical tree
construction, and (ii) time slot allocation along the constructed
tree. For example, the tree in [18] is constructed based on the
positions of the nodes in a 2-D plane. Various objectives of
convergecast scheduling algorithms exist, e.g., minimising time for
completing a convergecast [13], and maximising throughput [19],
which determine the slot assignment (i.e., the schedule) along the
tree.

When slots are assigned to nodes for data aggregation, in what
we term as data aggregation scheduling (DAS), a node will first
aggregate the data obtained from its children before relaying it
to its parent. The objective, in this case, is that a node can only
transmit a message after collecting data from all of its children.
However, whenever a node crashes in a WSN (e.g., due to energy
depletion), the values from a whole subtree disappear. Thus, it is
important for a DAS algorithm to be fault-tolerant to ensure that
correct nodes have a proper path to the sink, in the sense that their
parent transmits the aggregated data after their own transmission.

1.1. Contributions

Several works have addressed the problem of convergecast,
with a subset of these addressing the problem of data aggregation
scheduling. However, to the best of our knowledge, no work has
investigated the problem of DAS in the presence of crash failures, on
whichwe focus in this paper. Crash failures inWSNs canbe brought
about by, for example, defective hardware or battery exhaustion. In
this context, we make an in-depth study of DAS in the presence
of crash failures. We make a number of contributions in three
categories:

• Theory
1. We identify a necessary condition for solving the data

aggregation scheduling problem. This condition provides the
theoretical basis that explains the structure of several data
aggregation scheduling.

2. We provide two variants of the DAS problem, namely
(i) strong data aggregation scheduling, and (ii) weak data
aggregation scheduling.

3. We show that it is impossible to solve the strong data aggre-
gation scheduling problem.

4. We show that it is impossible to solve the weak data aggre-
gation scheduling problem in the presence of crash failures.

5. We introduce the problem of stabilising weak data aggrega-
tion scheduling and show that, in general, there is no 2-local
algorithm that solves the problem.

• Algorithm
1. We develop a modular d-local algorithm that solves weak

DAS and achieves efficient stabilisation, where d is the
diameter of the affected area.

• Results and validation
1. Using both simulation and an actual deployment on a small

testbed, we show that, under appropriate parameterisation,
the d-local algorithm can achieve 2-local stabilisation.

Our paper is structured as follows. We present our system and
fault models in Section 2. We formalise the problems of strong and
weak data aggregation scheduling in Section 3. In Section 4, we
focus on variants of the weak data aggregation convergecast. In
Section 5, we present and prove the various impossibility results.
In Section 6, we provide a d-local algorithm that achieves efficient
stabilisation. We present the performance of our algorithm in
Section 7. In Section 8, we survey related work in the area, and
put our work in the proper context. We discuss the impact of the
results in Section 9. We finally summarise the paper in Section 10.

2. Models: system and faults

2.1. Graphs and networks

A wireless sensor node is a computing device that is equipped
with a wireless interface and is associated with a unique identifier.
A wireless sensor network (WSN) consists of a set of wireless sen-
sor nodes that communicate among themselves via their wireless
interface. Communication in wireless networks is typically mod-
elledwith a circular communication range centred on a node.With
this model, a node is thought as able to exchange data with all de-
vices within its communication range.

A wireless sensor network is then typically modelled as an
undirected graph G = (V , E) where V is a set of Γ wireless sensor
nodes and E is a set of edges or links, each link being a pair of
distinct nodes. Twonodesm, n ∈ V are said to be 1-hopneighbours
(or neighbours) iff (m, n) ∈ E, i.e., m and n are in each other’s
communication range. We denote by M the set of m’s neighbours,
and we denote byMd, the d-hop neighbourhood ofm. We say that
two nodes m and n can collide at node p if (p ∈ M) ∧ (p ∈ N)1.
In general, two nodes m and n can collide if they are in the 2-hop
neighbourhood of each other. We then define the collision group
of a node n as follows:

CG(n) = {m ∈ V |((n,m) ∈ E) ∨ (2hopN(m, n))},

where 2hopN(m, n) is a predicate that returns true if m, n are in
each other’s 2-hop neighbourhood.

We denote by ∆m the degree of node m, i.e., the size of M . We
also denote by ∆G, the degree of G, i.e., ∆G = max({∆m,m ∈ V }).
We also denote by ηG, the maximum of nodes at any hop distance
in G. We assume a distinguish node S ∈ V , called a sink. A path of
length k is a sequence of nodes nk . . . n0 such that ∀j, 0 < j ≤ k, nj
and nj−1 are neighbours. We say a path nk . . . n0 is an S-path if
n0 = S. The path nk . . . n0 is said to be forward if ∀i, j, 0 < i ≤ j ≤

k, ni ≠ nj. A path nk . . . n0 is called a cycle if the path is forward and
n0 = nk. In this paper, we focus on forward S-paths (henceforth,
paths). Specifically, we are only interested in paths from a node to
the sink, hence forward S-paths. For an S-path nk . . . S, we say that
nk has an S-path.

Given an undirected graph G = (V , E): G is connected iff there
exists a path in G between each pair of distinct nodes. In general,
we are only interested in paths that end with the sink. We say that
G is S-connected iff every node in G has an S-path, and we say
that G is Sk-connected iff G is S-connected, and all nodes have k
node-disjoint S-paths. Two paths are node-disjoint only if the end
nodes of the two paths are the same while all other nodes differ.
In this paper, when we mention disjoint paths, we mean node-
disjoint paths. The distance between two nodesm and n in G is the
length of the smallest path between m and n in G. We denote the
distance betweenm and n by d(m, n). The diameterDG of G is equal
to max({d(m, n),m ∈ V ∧ n ∈ V }).

2.2. Distributed programs

2.2.1. Syntax
We model the processing on a WSN node as a process

containing non-empty sets of variables and actions. A distributed
program is thus a finite set of N communicating processes. We
represent the communication network topology of a distributed
program by an undirected connected graph G = (V , E), where V is
the set of N processes and E is a set of edges such that ∀m, n ∈

V , (m, n) ∈ E iff m and n can directly communicate together,
i.e., nodesm and n are neighbours.

1 We will say two nodesm and n can collide if such a node p exists.



Download English Version:

https://daneshyari.com/en/article/431487

Download Persian Version:

https://daneshyari.com/article/431487

Daneshyari.com

https://daneshyari.com/en/article/431487
https://daneshyari.com/article/431487
https://daneshyari.com

