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h i g h l i g h t s

• We study computation in possibly disconnected dynamic distributed systems.
• We replace continuous connectivity by minimal temporal connectivity conditions.
• We propose metrics capturing the speed of information spreading in dynamic networks.
• We give efficient protocols for the counting and token dissemination problems.
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a b s t r a c t

In this work, we study the propagation of influence and computation in dynamic distributed computing
systems that are possibly disconnected at every instant. We focus on a synchronous message-passing
communication model with broadcast and bidirectional links. Our network dynamicity assumption is a
worst-case dynamicity controlled by an adversary scheduler, which has received much attention recently.
We replace the usual (in worst-case dynamic networks) assumption that the network is connected
at every instant by minimal temporal connectivity conditions. Our conditions only require that another
causal influence occurs within every time window of some given length. Based on this basic idea, we define
several novel metrics for capturing the speed of information spreading in a dynamic network.We present
several results that correlate these metrics. Moreover, we investigate termination criteria in networks in
which an upper bound on any of these metrics is known. We exploit our termination criteria to provide
efficient (and optimal in some cases) protocols that solve the fundamental counting and all-to-all token
dissemination (or gossip) problems.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Distributed computing systems are becoming increasingly dy-
namic. The static and relatively stable models of computation
can no longer represent the plethora of recently established and
rapidly emerging information and communication technologies. In
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recent years, we have seen a tremendous increase in the number of
newmobile computing devices.Most of these devices are equipped
with some sort of communication, sensing, and mobility capabil-
ities. Even the Internet has become mobile. The design is now fo-
cused on complex collections of heterogeneous devices that should
be robust, adaptive, and self-organizing, possibly moving around
and serving requests that vary with time. Delay-tolerant networks
are highly dynamic, infrastructureless networks whose essential
characteristic is a possible absence of end-to-end communication
routes at any instant. Mobility may be active, when the devices
control and plan their mobility pattern (e.g. mobile robots), or
passive, in opportunistic-mobility networks, where mobility stems
from the mobility of the carriers of the devices (e.g. humans car-
rying cell phones) or a combination of both (e.g. the devices have
partial control over the mobility pattern, like for example when
GPS devices provide route instructions to their carriers). Thus, it
can vary from being completely predictable to being completely
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unpredictable. Gossip-based communication mechanisms, e-mail
exchanges, peer-to-peer networks, and many other contemporary
communication networks all assume or induce some sort of highly
dynamic communication network.

The formal study of dynamic communicationnetworks is hardly
a new area of research. There is a huge amount of work in distrib-
uted computing that deals with causes of dynamicity such as
failures and changes in the topology that are rather slow and
usually eventually stabilize (like, for example, in self-stabilizing
systems [11]). However, the low rate of topological changes that
is usually assumed there is unsuitable for reasoning about truly
dynamic networks. Even graph-theoretic techniques need to be
revisited: the suitable graph model is now that of a dynamic graph
(also known as a temporal graph or time-varying graph) (see e.g.
[25,15,8]), in which each edge has an associated set of time
labels indicating availability times. Even fundamental properties
of classical graphs do not easily carry over to their temporal
counterparts. For example, Kempe, Kleinberg, and Kumar [15]
found that there is no analog of Menger’s theorem (see e.g. [7] for a
definition) for arbitrary temporal networkswith one label on every
edge,which additionally renders the computation of the number of
node-disjoint s–t pathsNP-complete. Very recently, the authors of
[25] achieved a reformulation of Menger’s theorem which is valid
for all temporal networks, and additionally they introduced several
interesting cost-minimization parameters for optimal temporal
network design and gave some first results on them. Even the
standard network diameter metric is no longer suitable, and it has
to be replaced by a dynamic/temporal version. In a dynamic star
graph in which all leaf nodes but one go to the center one after
the other in a modular way, any message from the node that last
enters the center to the node that never enters the center needs
n− 1 steps to be delivered, where n is the size (number of nodes)
of the network; that is, the dynamic diameter is n − 1 while, one
the other hand, the classical diameter is just 2 [3] (see also [18]).

2. Related work

Distributed systems with worst-case dynamicity were first
studied in [26]. Their outstanding novelty was to assume a com-
munication network that may change arbitrarily from time to time
subject to the condition that each instance of the network is con-
nected. They studied asynchronous communication and consid-
ered nodes that can detect local neighborhood changes; these
changes cannot happen faster than it takes for a message to trans-
mit. They studied flooding (in which one node wants to dissemi-
nate one piece of information to all nodes) and routing (in which
the information need only reach a particular destination node t)
in this setting. They described a uniform protocol for flooding that
terminates in O(Tn2) rounds using O(log n) bit storage and mes-
sage overhead, where T is themaximum time it takes to transmit a
message. They conjectured that, without identifiers (IDs), flooding
is impossible to solvewithin the above resources. Finally, a uniform
routing algorithm was provided that delivers to the destination in
O(Tn) rounds using O(log n) bit storage and message overhead.

Computation under worst-case dynamicity was further and ex-
tensively studied in a series of works by Kuhn et al. in the syn-
chronous case. In [16], the network was assumed to be T-interval
connected, meaning that any time window of length T has a static
connected spanning subgraph (persisting throughout the win-
dow). Among others, counting (inwhich nodesmust determine the
size of the network) and all-to-all token dissemination (in which n
different pieces of information, called tokens, are handed out to the
n nodes of the network, each node being assigned one token, and
all nodes must collect all n tokens) were solved in O(n2/T ) rounds
using O(log n) bits per message, almost-linear-time randomized
approximate counting was established for T = 1, and two lower

bounds on token dissemination were given. Several variants of co-
ordinated consensus in 1-interval connected networkswere studied
in [17]. Two interesting findingswere that, in the absence of a good
initial upper bound on n, eventual consensus is as hard as com-
puting deterministic functions of the input, and that simultaneous
consensus can never be achieved in less than n−1 rounds in any ex-
ecution. [13] is a recent work that presents information-spreading
algorithms inworst-case dynamic networks based on network cod-
ing. An open setting (modeled as high churn) in which nodes con-
stantly join and leave has very recently been considered in [4]. For
an excellent introduction to distributed computation under worst-
case dynamicity, see [18]. Two very thorough surveys on dynamic
networks are [27,8].

Another notable model for dynamic distributed computing sys-
tems is the population protocolmodel [1]. In thatmodel, the compu-
tational agents are passively mobile and interact in ordered pairs,
and the connectivity assumption is a strong global fairness con-
dition according to which all events that may always occur, oc-
cur infinitely often. These assumptions give rise to some sort of
structureless interacting automata model. The usually assumed
anonymity and uniformity (i.e. n is not known) of protocols only al-
low for commutative computations that eventually stabilize to a
desired configuration. Most computability issues in this area have
nowbeen established. Constant-state nodes on a complete interac-
tion network (and several variations) compute the semilinear pred-
icates [2]. Semilinearity persists up to o(log log n) local space but
not more than this [10]. If constant-state nodes can additionally
leave and update fixed-length pairwise marks, then the computa-
tional power dramatically increases to the commutative subclass
of NSPACE(n2) [21]. For a very recent introductory text see [22].

3. Contribution

In this work, we study worst-case dynamic networks that are
free of any connectivity assumption about their instances. Our dy-
namic network model is formally defined in Section 4.1. We only
impose some temporal connectivity conditions on the adversary
guaranteeing that another causal influence occurs within every time
window of some given length, meaning that, in that time, another
node first hears of the state that some node u had at some time
t (see Section 4.3 for a formal definition of causal influence). Note
that our temporal connectivity conditions are minimal assump-
tions that allow for bounded end-to-end communication in any dy-
namic network including those that have disconnected instances.
Based on this basic idea, we define several novel generic metrics
for capturing the speed of information spreading in a dynamic net-
work. In particular, we define the outgoing influence time (oit) as
the maximal time until the state of a node influences the state of
another node, the incoming influence time (iit) as the maximal time
until the state of a node is influenced by the state of another node,
and the connectivity time (ct) as the maximal time until the two
parts of any cut of the network become connected. These metrics
are defined in Section 5, where also several results that correlate
these metrics to themselves and to standard metrics, like for ex-
ample the dynamic diameter, are presented.

In Section 5.1, we present a simple but very fundamental
dynamic graph based on alternatingmatchings that has oit 1 (equal
to that of instantaneous connectivity networks) but at the same
time is disconnected in every instance. In Section 6, we exhibit
another dynamic graph additionally guaranteeing that edges take
maximal time to reappear. That graph is based on a geometric
edge-coloring method due to Soifer for coloring a complete graph
of even order nwith n−1 colors [28]. Similar results have appeared
before, but to the best of our knowledge only in probabilistic
settings [9,6].
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