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We prove several results about the complexity of the role colouring problem. A role 
colouring of a graph G is an assignment of colours to the vertices of G such that two 
vertices of the same colour have identical sets of colours in their neighbourhoods. We show 
that the problem of finding a role colouring with 1 < k < n colours is NP-hard for planar 
graphs. We show that restricting the problem to trees yields a polynomially solvable case, 
as long as k is either constant or has a constant difference with n, the number of vertices 
in the tree. Finally, we prove that cographs are always k-role-colourable for 1 < k ≤ n and 
construct such a colouring in polynomial time.

Published by Elsevier B.V.

1. Introduction

A role colouring of a graph G is an assignment of colours to the vertices of G such that two vertices of the same 
colour have identical sets of colours in their neighbourhoods. For example, suppose we colour the vertices of G red or 
blue. If this colouring is a role colouring then for all red vertices u and v we have that u has a blue neighbour if and 
only if v has a blue neighbour. The concept arises from the study of social networks. Network science is an increasingly 
important application of graph theory and role colourings are a natural formulation of roles played by nodes in a real-world 
network [16,17]. This structure was formalised by White and Reitz in terms of graph homomorphisms in [22], and developed 
extensively by Borgatti and Everett [2,1,7,8]. A fast, applicable algorithm for finding role colourings is proposed in [12,3]. 
A homomorphism h is said to be locally surjective if h is surjective when restricted to the neighbourhood set of any vertex. 
Locally surjective homomorphisms are equivalent to role colourings and they appear in the literature under many other 
names, e.g. role assignment [21], role equivalence [3], regular equivalence [2]. Throughout this paper we use the language 
of graph colourings and we refer to a role colouring using k colours as a k-role-colouring.

We consider the computational problem associated with role colourings whose input is a graph G and whose output 
is a partition of the vertices of G into k non-empty subsets satisfying the definition of a role colouring given above. We 
call this problem k-role-colourability, or k-rolecol for short. This problem differs from the more common colourability

problem in a few important ways. A k-role-colouring does not usually imply the existence of a k + 1-role-colouring and one 
cannot necessarily combine role colourings given for each connected component of a graph. Additionally, every graph with 
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no isolated vertex has a 1-role-colouring obtained by giving each vertex the same colour. Any colouring obtained in this 
way or by giving each vertex its own colour is said to be a trivial role colouring.

Finding role colourings of a given size is known to be NP-complete in general [15,10]. For k ≥ 3, the k-rolecol problem 
is NP-complete when restricted to chordal graphs [21]. However, 2-role-colouring can be solved in polynomial time for 
chordal graphs [19]. Not many other partial results on complexity of role colouring are known. In fact, interval graphs and 
trees are the only non-trivial classes in which a polynomial solution is known to exist, and only for a constant number of 
colours.

The rest of this paper is organised as follows. In Section 2, we prove that k-rolecol remains NP-complete even when 
restricted to planar graphs, a class that was suggested for examination in [21] and is one of the most extensively studied in 
the literature. In Section 3, we give an explicit algorithm that computes a k-role-colouring of a tree in polynomial time, as 
long as k is either constant or has a constant difference with n, the number of vertices in T . Finally, in Section 4, we show 
that every cograph (with at least k vertices) has a k-role-colouring, and hence that the decision version of the problem 
is solvable in polynomial time in this class. Our proof is constructive and gives an explicit algorithm to construct such a 
colouring.

2. Planar graphs

In order to prove that k-rolecol is NP-complete when restricted to planar graphs, we introduce the satisfiability prob-

lem, defined below. A boolean formula φ (in conjunctive normal form) is a set of clauses C1, C2, . . . , each of which is a set of 
variables x1, x2, . . . . The variables may take values TRUE or FALSE. For a given assignment of these values to the variables, 
a clause is said to be satisfied if at least one of its variables is assigned the value TRUE. A formula is satisfied if each of its 
clauses is satisfied. The satisfiability problem takes a boolean formula on n variables as its input and asks if there is an 
assignment of TRUE and FALSE to the variables that satisfies the formula. The general satisfiability problem was the first 
to be revealed to be NP-complete [5], and remains a central problem in theoretical computer science.

We will use a reduction from a certain restricted version of satisfiability. In order to describe this restricted problem, 
we define the following graph theoretic notion. The formula graph Gφ of a given formula φ is a bipartite graph whose 
vertices correspond to the clauses and variables of φ with an edge between C and x if the variable x appears in the 
clause C . Let k-satisfiability be the satisfiability problem with the restriction that each clause contains at most k variables. 
The 3-satisfiability problem is NP-complete even when restricted to formulas with planar formula graphs [13]. In [20], 
Tovey showed that the problem is NP-complete under the restriction that each clause has two or three variables and 
each variable appears at most three times. We call the corresponding problem 3∗, 3∗-satisfiability. We now combine 
the restrictions imposed by Tovey and planarity to show that planar 3∗, 3∗-satisfiability, which is 3∗, 3∗-satisfiability

restricted to formulas with planar formula graphs, is also NP-complete. We list a couple of planarity preserving operations 
that we will need throughout the coming proofs, in an easy lemma. See also [11].

Lemma 1. If G ′ is a graph created from a planar graph G by any of the following operations, then G ′ is planar.

(a) Adding a path x, z1, . . . , zk, y where x, y ∈ V (G), and x, y share a face in some planar drawing of G, and z1, . . . , zk are new 
vertices.

(b) Replacing a vertex x ∈ V (G) with dG(x) = k by a cycle z1, . . . , zk with edges zi , zi+1 , 1 ≤ i ≤ k − 1 and zk, z1 , and edges zi , yi , 
1 ≤ i ≤ k, where y1, . . . , yk are the neighbours in G of x appearing in clockwise order in a planar drawing of G.

(c) Attaching a new planar subgraph H to G, such that V (G ′) = V (G) ∪ V (H), E(G ′) = E(G) ∪ E(H) ∪xz, where x ∈ V (G), z ∈ V (H).

Proof.

(a) Replacing an edge by a multi-edge does not destroy planarity and replacing an edge xy by a path x, z1, . . . , zk, y clearly 
does not destroy planarity either.

(b) Cycles are planar and since the neighbours y1, . . . , yk and new vertices z1, . . . , zk are in the same order clockwise, the 
edges zi , yi , 1 ≤ i ≤ k do not cross each other or any new cycle-edges.

(c) We take the disjoint union of G and H and draw G such that x is on the outer face and H such that z is on the outer 
face. Adding an edge between two vertices on the same face does not destroy planarity. �

Lemma 2. The planar 3∗, 3∗-satisfiability problem is NP-complete.

Proof. We follow the method [20] of reducing any 3-satisfiability problem to a 3∗, 3∗-satisfiability problem. Let the 
formula φ be an instance of the planar 3-satisfiability problem, with a given planar drawing of Gφ . We will obtain a 
formula φ′ which is an instance of planar 3∗, 3∗-satisfiability from φ. By applying operations from Lemma 1 to Gφ we 
obtain a planar drawing of Gφ′ . Suppose that variable x appears in k > 3 clauses, labelled C j1 , C j2 , . . . , C jk such that their 
respective edges meet x in clockwise order around x in our given drawing of Gφ . Create k new variables x1, . . . , xk and in 
each clause C ji replace the variable x with the variable xi . Then add new clauses Cxi = {xi ∨ x̄i+1} for 1 ≤ i ≤ k − 1 and 
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