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An all-to-all routing in a graph G is a set of oriented paths of G , with exactly one path 
for each ordered pair of vertices. The load of an edge under an all-to-all routing R is 
the number of times it is used (in either direction) by paths of R , and the maximum 
load of an edge is denoted by π(G, R). The edge-forwarding index π(G) is the minimum 
of π(G, R) over all possible all-to-all routings R , and the arc-forwarding index �π(G) is 
defined similarly by taking direction into consideration, where an arc is an ordered pair of 
adjacent vertices. Denote by w(G, R) the minimum number of colours required to colour 
the paths of R such that any two paths having an edge in common receive distinct colours. 
The optical index w(G) is defined to be the minimum of w(G, R) over all possible R , and 
the directed optical index �w(G) is defined similarly by requiring that any two paths having 
an arc in common receive distinct colours. In this paper we obtain lower and upper bounds 
on these four invariants for 4-regular circulant graphs with connection set {±1, ±s}, 1 <
s < n/2. We give approximation algorithms with performance ratio a small constant for 
the corresponding forwarding index and routing and wavelength assignment problems for 
some families of 4-regular circulant graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation and definitions

Circulant graphs, or multi-loop networks as used in computer science literature, are basic structures for interconnection 
networks [5]. As such a lot of research on circulant graphs has been done in more than three decades, leading to a number 
of results on various aspects of circulant graphs [5,11,14,15,18,21,24–27]. Nevertheless, our knowledge on how circulant 
networks behave with regard to information dissemination is very limited. For example, our understanding to some basic 
communication-related invariants for circulant graphs such as the arc-forwarding, edge-forwarding and optical indices is 
quite limited. The purpose of this paper is to study these invariants with a focus on circulant networks of degree 4.

Given an integer n ≥ 3, denote by Zn the group of integers modulo n with operation the usual addition. Given S ⊂ Zn
such that 0 /∈ S and s ∈ S implies −s ∈ S , the circulant graph Cn(S) of order n with respect to S is defined to have vertex set 
Zn such that i, j ∈ Zn are adjacent if and only if i − j ∈ S . (In other words, a circulant graph is a Cayley graph on Zn .) In the 
case when S = {a, b, n −a, n −b}, where a, b, n −a, n −b are pairwise distinct elements of Zn , Cn(S) is a 4-regular graph (that 
is, every vertex has degree 4) and we use Cn(a, b) in place of Cn(S). In this paper we deal with circulant graphs Cn(1, s)
for some s ∈ Zn \ {−1, 0, 1, n/2}. (Note that when n and a are coprime, Cn(a, b) is isomorphic to Cn(1, s), where s ≡ a−1b
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mod n). Without loss of generality, we assume 1 < s < n/2. Just like any other Cayley graph, Cn(1, s) is vertex-transitive, 
that is, for any i, j ∈ Zn there exists a permutation of Zn that preserves the adjacency relation of Cn(1, s) and maps i to j. 
(In fact, for fixed i, j this permutation can be chosen as x �→ x + ( j − i), x ∈ Zn with operation undertaken in Zn .)

A network can be represented by an undirected graph G = (V (G), E(G)), where the node set V (G) represents the set 
of processors or routers, and the edge set E(G) represents the set of physical links. So we will use the words ‘graph’ 
and ‘network’ interchangeably. We assume the full duplex model, that is, an edge is regarded as two arcs with opposite 
directions over which messages can be transmitted concurrently. A connection request (or a request for short) is an ordered 
pair of distinct nodes (x, y) for which a path P x,y with orientation from x to y in G must be set up to transmit messages 
from x to y. In this paper we only consider all-to-all communication, or equivalently, the all-to-all request set for which one 
path from every node to every other node must be set up in order to fulfil communications. (In the literature other types of 
request sets have also been studied.) We call a set of paths R = {P x,y : x, y ∈ V (G), x 
= y} an all-to-all routing (or a routing
for short) in G , where P x,y is not necessarily the same as P y,x . The load of an edge e of G with respect to R , denoted by 
π(G, R, e), is the number of paths in R passing through e in either directions. Similarly, the load of an arc a of G with 
respect to R , denoted by �π(G, R, a), is the number of paths in R passing through a along its direction. Define

π(G, R) := max
e∈E(G)

π(G, R, e), �π(G, R) := max
a∈A(G)

�π(G, R,a), (1)

where A(G) is the set of arcs of G . Define

π(G) := min
R

π(G, R), �π(G) := min
R

�π(G, R) (2)

and call them the edge-forwarding and arc-forwarding indices of G [3,17], respectively, where the minimum is taken over all 
routings R for G . Obviously, we have

�π(G) ≥ π(G)/2. (3)

The edge-forwarding index problem is the one of finding π(G) for a given graph G , and the arc-forwarding index problem is 
understood similarly.

In practical terms, the edge-forwarding and arc-forwarding indices measure the minimum heaviest load on edges and 
arcs of a given network, respectively, with respect to all-to-all communication. If the network is all-optical, another impor-
tant problem is to minimise the number of wavelengths used such that any two paths having an edge (or arc) in common 
are assigned distinct wavelengths. Regarding wavelengths as colours, these problems can be formulated as the following 
path colouring problems. Given a routing R for G , an assignment of one colour to each path in R is called an edge-conflict-free 
colouring of R if any two paths having an edge in common (regardless of the orientation of the paths) receive distinct 
colours, and an arc-conflict-free colouring of R if any two paths having an arc in common (with the same orientation as 
the paths) receive distinct colours. (An edge-conflict-free colouring is called valid in [12].) Define w(G, R) ( �w(G, R), re-
spectively) to be the minimum number of colours required in an edge-conflict-free (arc-conflict-free, respectively) colouring 
of R . Define

w(G) := min
R

w(G, R), �w(G) := min
R

�w(G, R) (4)

and call them the undirected and directed optical indices of G , respectively, where the minimum is taken over all routings 
R for G . Since the number of colours needed is no less than the number of paths on a most loaded edge (or arc in the 
directed version), we have (see e.g. [6])

w(G) ≥ π(G), �w(G) ≥ �π(G). (5)

In general, equality in (5) is not necessarily true (see e.g. [20,30]). The routing and wavelength assignment problem is the 
problem of computing w(G), and its oriented version is the one of finding �w(G).

1.2. Literature review

The study of the forwarding indices has been intensive in the literature. Heydemann et al. [17] proposed the edge-
forwarding index problem and obtained basic results on this invariant, including upper bounds for the Cartesian product of 
graphs. In [23] it was proved that orbital regular graphs (which are essentially Frobenius graphs [10] except cycles and stars) 
achieve the smallest possible edge-forwarding index. In [25–27], Thomson and Zhou gave formulas for the edge-forwarding 
and arc-forwarding indices of two interesting families of Frobenius circulant graphs. The exact value of edge-forwarding 
index of some other graphs have also been computed, including Knödel graphs [11] and recursive circulant graphs [14]. 
However, in general it is difficult to find the exact value or a good estimate of the edge-forwarding or arc-forwarding in-
dex of a graph, even for some innocent-looking classes of graphs such as circulant graphs. The authors of [29] obtained 
lower and upper bounds on the edge-forwarding index of a general circulant graph. However, these bounds are difficult 
to compute in general. Also, a uniform routing of shortest paths may not exist for circulant graphs, just as the case for 
Cayley graphs in general [16]. The reader is referred to the recent survey [28] for the state-of-the-art on edge-forwarding 
and arc-forwarding indices of graphs.
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