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For a partial word w the longest common compatible prefix of two positions i, j, denoted 
lccp(i, j), is the largest k such that w[i, i + k − 1] and w[ j, j + k − 1] are compatible. The 
LCCP problem is to preprocess a partial word in such a way that any query lccp(i, j) about 
this word can be answered in O (1) time. We present a simple solution to this problem that 
works for any linearly-sortable alphabet. Our preprocessing is in time O (nμ + n), where μ
is the number of blocks of holes in w .

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A regular word (a string) is a finite sequence of symbols from an alphabet �. The notion of partial word is a generaliza-
tion of the notion of regular word. It may contain occurrences of a special symbol � (a “hole”, a don’t care symbol), which 
may represent any symbol of the alphabet. Motivation on partial words and their applications can be found in the book [1].

The longest common compatible prefix (LCCP) problem is a natural generalization into partial words of the longest 
common prefix (LCP) problem for regular words. For the LCP problem an O (n)-preprocessing-time and O (1)-query-time 
solution exists. Recently an efficient algorithm for the LCCP problem has been given by F. Blanchet-Sadri and J. Lazarow [2]. 
The preprocessing time is O (nh + n), where h is the number of holes in w , and the query time is constant. Their data 
structure is rather complex. It is based on suffix dags which are a modification of suffix trees and requires � to be a fixed 
alphabet (i.e. |�| = O (1)).

We show a much simpler data structure that requires only O (nμ + n) construction time and space and also allows 
constant-time LCCP-queries. Our algorithm is based on alignment techniques and suffix arrays for regular words and works 
for any integer alphabet (that is, the letters can be treated as integers in a range of size nO (1)).
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Fig. 1. Illustration of transit positions; μ = 3, κ = 6. The first and the last symbols are sentinels.

Let w be a partial word of length n. That is, w = w1 . . . wn , with wi ∈ � ∪ {�}, where � is called the alphabet (the set 
of letters) and � /∈ � denotes a hole. A non-hole position in w is called solid. By h we denote the number of holes in w
and by μ we denote the number of blocks of consecutive holes in w .

By ↑ we denote the compatibility relation: a ↑ � for any a ∈ � and moreover ↑ is reflexive. The relation ↑ is extended in 
a natural letter-by-letter manner to partial words of the same length. Note that ↑ is not transitive: a ↑ � and � ↑ b whereas 
a /↑b for any letters a �= b.

Example 1. Let w = a b � � a � � � b c a b �. There are 7 solid positions in w , h = 6 and μ = 3.

By w[i, j] we denote the subword wi . . . w j . If j < i then w[i, j] = ε, the empty word. The longest common compatible 
prefix of two positions i, j, denoted lccp(i, j), is the largest k ≥ 0 such that i + k − 1, j + k − 1 ≤ n and w[i, i + k − 1] ↑
w[ j, j + k − 1].

Example 2. For the word w from Example 1, we have lccp(2, 9) = 3, lccp(1, 2) = 0, lccp(3, 6) = 8.

We tackle the following problem.

LCCP Problem
Input: A partial word w of length n over an integer alphabet.
Queries: lccp(i, j) for 1 ≤ i, j ≤ n.

2. Data structure

We denote the set of all positions in w by [n] = {1, . . . , n}. By type(i) we mean hole or solid depending on the type of wi . 
We add two sentinel symbols, w0 and wn+1. We set w0 = � if w1 is solid or w0 = a ∈ � if w1 is a hole. Similarly, we set 
wn+1 = � if wn is solid or wn+1 = a ∈ � if wn is a hole.

A position i ∈ [n] in w is called transit if it is a hole directly preceded by a solid position or a solid position directly 
preceded by a hole. Let all transit positions in w be

TRANSIT = {i1, i2, . . . , iκ }.
Note that i1 = 1 and that κ ≤ 2μ + 1.

Example 3. Let w = ab � � a � � � bcab �. Then TRANSIT = {1, 3, 5, 6, 9, 13}; see also Fig. 1.

Our data structure consists of two parts:

(1) a data structure of size O (n) allowing to compute in O (1) time the length of the longest common prefix, denoted lcp(i, j), 
between any two positions in the regular word ŵ , which results from w by treating holes as solid symbols.

(2) a n × κ table

LCCP[i, j] = lccp(i, j) for i ∈ [n], j ∈ TRANSIT.

For convenience we extend this table with LCCP[i, n + 1] = LCCP[n + 1, i] = 0 for i ∈ {1, . . . , n + 1}.

The data structure (1) consists of the suffix array for ŵ and Range Minimum Query data structure. A suffix array is 
composed of three tables: SUF , RANK and LCP. The SUF table stores the list of positions in ŵ sorted according to the 
increasing lexicographic order of suffixes starting at these positions. The LCP array stores the lengths of the longest common 
prefixes of consecutive suffixes in SUF . We have LCP[1] = −1 and, for 1 < i ≤ n, we have:
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