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Let BHn×n(m) be the set of n ×n Butson Hadamard matrices where all the entries are m-th 
roots of unity. For H1, H2 ∈ BHn×n(m), we say that H1 is equivalent to H2 if H1 = P H2 Q
for some monomial matrices P and Q whose nonzero entries are m-th roots of unity. 
In the present paper we show by computer search that all the matrices in BH17×17(17) are 
equivalent to the Fourier matrix of degree 17. Furthermore we shall prove that, for a prime 
number p, a matrix in BHp×p(p) which is not equivalent to the Fourier matrix of degree p
gives rise to a non-Desarguesian projective plane of order p.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let m and n be positive integers. We shall denote by BHn×n(m) the set of H ∈ Matn×n(C) such that H H∗ = nIn and 
each entry of H is an m-th root of unity, where H∗ is the conjugate transpose of H and In is the n × n identity matrix. 
Following [3], we call a matrix in BHn×n(m) a Butson Hadamard matrix.

We can give an equivalence relation on the set BHn×n(m) as follows. Two matrices H1 and H2 in BHn×n(m) are equivalent
if H2 can be obtained from H1 via a finite sequence of the following operations:

(O1) a permutation of two rows (columns);
(O2) a multiplication of a row (column) by an m-th root of unity.

In fact there are so many works on Butson Hadamard matrices, and it is known that these studies have applications to 
many areas. (See e.g. [1,4].) However, the fundamental questions for the existence or non-existence of Butson Hadamard 
matrices with various parameters n and m are normally difficult to answer. One of the most well-known non-existence 
results is the theorem of Butson:

Theorem 1.1. (See [3, Theorem 3.1, p. 895].) If p is a prime number, then BHn×n(p) = ∅, unless n = pt where t is a positive integer.
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In the present paper we focus on the matrices in BHp×p(p) where p is a prime number. Recall that the Fourier matrix F p
of degree p is a p × p complex matrix defined as follows:

F p :=
(

exp
2π

√−1 i j

p

)
0≤i, j≤p−1

.

It is well known (or see Remark 2.3 below) that F p belongs to BHp×p(p) for each prime number p. However, it is still open 
whether or not every matrix in BHp×p(p) is equivalent to F p . On the other hand, it would be an interesting result if we 
could find a Butson Hadamard matrix in BHp×p(p) which is not equivalent to F p , because such a matrix gives rise to a 
non-Desarguesian projective plane of order p. (This is a main result of Section 3. See Theorem 3.4 below.)

If one follows the simple method as stated in Proposition 2.4 below (or see Theorem 2.7 below), the uniqueness of the 
equivalence classes on BHp×p(p) is easily shown for p = 2, 3, 5, 7 without any use of computer. For p = 11, 13, we can also 
establish the uniqueness equivalence classes on BHp×p(p) with a light aid of computer. (The run time over a single 3.0 GHz 
CPU is less than 10 seconds.) However, for larger prime numbers p, one may notice that a heavy amount of run time is 
needed for classifying the matrices in BHp×p(p). In fact, it was estimated to take about 5000 hours for BH17×17(17) over a 
single 3.0 GHz CPU. We introduced a parallel algorithm for proving the following result: (The computation was executed on 
the high performance multi-node server system Fujitsu Primergy CX400 in Kyushu University, Japan [6].)

Theorem 1.2. Every matrix in BH17×17(17) is equivalent to the Fourier matrix of degree 17.

In Section 2 we explain our algorithm for classifying the matrices in BHp×p(p) up to equivalence. In Section 3 we show 
that if there is a Butson Hadamard matrix in BHp×p(p) which is not equivalent to the Fourier matrix F p , then there exists 
a non-Desarguesian projective plane of order p.

2. Algorithm for classifying the matrices in BHp×p(p)

Throughout this paper it is assumed that the entries of an n × n matrix are indexed by integers from 0 to n − 1. For 
instance, the upper leftmost entry of an n × n matrix is considered to be in (0, 0)-position rather than in (1, 1)-position, 
and the lower rightmost entry is in (n − 1, n − 1)-position rather than in (n, n)-position.

In what follows we assume that p is a prime number and

ξp = cos(2π/p) + √−1 sin(2π/p).

We denote by Fp = {0, 1, . . . , p − 1} a finite field with p elements, and adopt the natural ordering of Fp , i.e., 0 < 1 < · · ·
< p − 1.

Definition 2.1. We say that D = (Di, j) ∈ Matp×p(Fp) is a difference matrix if {Di,k − D j,k | k = 0, 1, . . . , p − 1} = Fp for any i
and j with i �= j. The set of all difference matrices of degree p is denoted by Dp×p .

Suppose H = (ξ
Ei, j
p ) is a matrix in BHp×p(p). We always regard an exponent Ei, j for ξ Ei, j

p as an element of Fp so that 
we can define a map

λ : BHp×p(p) → Matp×p(Fp) by λ(H) = (Ei, j).

Lemma 2.2. The map λ is one to one and Imλ =Dp×p . Thus there is a one to one correspondence between BHp×p(p) and Dp×p .

Proof. The injectivity follows from the definition of λ. If H = (ξ
Ei, j
p ) is in BHp×p(p) then, for all distinct i, j ∈ {0, . . . , p − 1},

(H H∗)i, j =
p−1∑
k=0

Hi,k H̄ j,k =
p−1∑
k=0

ξ
Ei,k−E j,k
p .

Since X p−1 + · · · + X + 1 ∈ C[X] is the minimal polynomial of ξp , (H H∗)i, j = 0 if and only if {Ei,k − E j,k | k = 0, 1, . . . ,
p − 1} = Fp . Hence λ(H) ∈Dp×p and λ is onto Dp×p . �
Remark 2.3. The exponent matrix for the Fourier matrix F p of degree p is (i j) which is clearly in Dp×p . Thus F p ∈ BHp×p(p)

by Lemma 2.2.

For D = (Di, j) ∈ Dp×p , we say that D is fully normalized if D0,i = Di,0 = 0 and D1,i = Di,1 = i for all i ∈ {0,1, . . . , p − 1}. 
For H ∈ BHp×p(p), we say that H is fully normalized if λ(H) is. If a matrix N = (Ni, j) in Dp×p or BHp×p(p) is fully normal-

ized then the (p − 2) × (p − 2) submatrix (Ni, j)
p−1
i, j=2 is referred to as the core of N .



Download English Version:

https://daneshyari.com/en/article/431608

Download Persian Version:

https://daneshyari.com/article/431608

Daneshyari.com

https://daneshyari.com/en/article/431608
https://daneshyari.com/article/431608
https://daneshyari.com

