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Covering all edges of a graph by a minimum number of cliques is a well known NP-hard 
problem. For the parameter k being the maximal number of cliques to be used, the problem 
becomes fixed parameter tractable. However, assuming the Exponential Time Hypothesis, 
there is no kernel of subexponential size in the worst-case.
We study the average kernel size for random intersection graphs with n vertices, edge 
probability p, and clique covers of size k. We consider the well-known set of reduction 
rules of Gramm, Guo, Hüffner, and Niedermeier (2009) [17] and show that with high 
probability they reduce the graph completely if p is bounded away from 1 and k < c log n
for some constant c > 0. This shows that for large probabilistic graph classes like random 
intersection graphs the expected kernel size can be substantially smaller than the known 
exponential worst-case bounds.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past few years, many results on upper and lower bounds on the kernel sizes of parameterized problems have been 
shown. Nearly all of them only consider the worst-case. We take a different route and consider the average kernel size for 
a probabilistic graph model and present a tight characterization depending on the graph density.

Our study problem is the NP-hard problem Clique Cover, which aims to covering the edges of a graph with a minimum 
number of cliques. The problem arises in studies of the interaction of entities in real-world networks [18] and in protein–
protein interaction networks [3]. It also has applications in compiler optimization [29], computational geometry [1], and 
computational statistics [16,27]. In different domains the problem has been described by varying names, other variants are
Keyword Conflict [22], Covering by Cliques [15], and Intersection Graph Basis [14].

Formal definition of the problem. A clique in an undirected graph G = (V , E) is a subgraph, where any two vertices are 
connected by an edge. For an undirected graph G and an integer k ≥ 0, the decision problem (Edge) Clique Cover answers 
yes iff there is a set of at most k cliques {G1, G2, . . . , Gk} in G such that each edge in G has both its endpoints in at least 
one of the cliques Gi .
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Previous results for special graph classes. Clique Cover has been studied from many perspectives. It remains NP-hard even 
when restricting to planar input graphs [6] or graphs with maximum degree 6 [21]. However there are polynomial-time 
algorithms when restricting to graphs with maximum degree 5 [21], chordal graphs [24] or line graphs [26]. Back in the 
general setting Lund and Yannakakis have shown that the optimization variant of Clique Cover is not approximable within 
a factor of |V |ε for some ε > 0 (unless P = NP) [23]. In fact, it remains APX-hard even when restricting to biconnected 
graphs of maximum degree 7 [20]. Hence there is no hope of good and fast approximation algorithms.

Previous parametrized results. Another popular approach on handling the problem is studying its parametrized version. Fixing 
the output size as a parameter k, Gyárfás [19] presents a set of simple reduction rules. Successively applying such reduction 
rules leads to a smaller instance and/or parameter. This process is called a kernelization as it results in a so-called kernel, 
which is a yes-instance iff the original input was a yes-instance, too. The reduction rules considered in [19] leave a kernel 
of size (number of vertices) at most 2k . Computing this kernelization can be done in poly(n) time. As this kernel size does 
not depend on |V | = n, Clique Cover with this parametrization is therefore in FPT, see Gramm et al. [17]. Performing 
these reduction rules, we get an algorithm with runtime O

(
n4 + f

(
2k

))
. Recent results of Cygan et al. [7,8] show that 

there is no guaranteed polynomial sized kernel if not NP ⊆ coNP/ poly and there is no subexponential sized kernel, unless 
the Exponential Time Hypothesis fails. In fact, unless P = NP, the kernel has to be of exponential size in worst case [28]. 
Thus we do not expect a 22o(k) · poly(n) time algorithm – a double exponential runtime is required. These results are not 
depending on the set of reduction rules used for kernelization. Moreover, kernel sizes (whether polynomial or not) are of 
great interest because they lead to a finer structural analysis of FPT problems, see Bodlaender et al. [4].

Previous average case results. Clique Cover has also been studied on random graphs. Bollobás et al. [5] give lower and upper 
bounds on the number of cliques required to cover the entire graph, which hold with high probability (meaning with 
probability 1 − o(1) as n tends to infinity, w.h.p.) for random graphs (Erdős–Rényi) with edge probability p = 1

2 . This is 
equivalent to a uniform distribution over all graphs with set of vertices |V | = {1, 2, . . . , n}. This result was improved to 
�(n2/ log2 n) for all constant p with 0 < p < 1 by Frieze and Reed [13]. Also on random intersection graphs the problem 
was studied. Behrisch and Taraz [2] give algorithms, which find w.h.p. a clique cover of minimal size in polynomial time for 
certain probability functions, if the underlying feature set (and thus expected size of the clique cover) is nα for a constant 
0 < α < 1.

Our results. We study the kernel size in a probabilistic graph model called random intersection graphs similar to Erdős–Rényi 
that ensures that the drawn graphs are coverable by at most k cliques (for details see Section 3). First we study a set of 
reduction rules (defined in Section 4), which intuitively arises from the definition of the graph model. In Section 5 we 
show that for sparse graphs (edge probabilities p decreasing at least polynomially to 0) we get w.h.p. polynomial sized 
kernels with respect to the parameter k. Therefore the worst case instances there are rare. If the graphs are dense (i.e., edge 
probabilities p not decreasing at least polynomially to 0, e.g., constant p with 0 < p < 1) the set of reduction rules w.h.p. 
reduces the instances only to kernels with exponential size. We give a full characterization of the (w.h.p.) kernel sizes with 
respect to the edge probability in Theorem 5.1. The situation of stepwise decreasing kernel size is visualized in Fig. 1 on 
page 132. At probabilities p(n) which are asymptotically n−2/i , with 1 < i ≤ k (more precisely, limn→∞ log p

log n = − 2
i =: −a), 

the behavior of the kernel size cannot be described with full certainty by the parameter a alone and only an interval can 
be stated.

In a second step we generalize the previous set of reduction rules and study the original set of reduction rules given by 
Gramm et al. [17]. For this we can use the same techniques to show in Section 6 that for an edge probability of p < 1 − rk

for a constant 0 < r < 1 and k < c(r) log n for a positive constant c(r) depending on r this set of rules reduces the graph 
w.h.p. completely. For random intersection graphs the reduction rules of Gramm et al. [17] can therefore be seen as an 
‘optimal set’ of reduction rules for kernelization.

2. Erdős–Rényi random graphs

The well known observation that searching for a minimal clique cover is NP-complete is a pure worst case statement. 
For a better understanding, we want to study probabilistic graph models and perform an average analysis. One such popular 
model was constructed by Erdős and Rényi [9] and is defined as follows.

Definition 2.1 (Erdős–Rényi graphs). Let n be a positive integer and p(n) a function N → [0, 1]. Then G(n, p) is the probability 
space on the set of graphs with n vertices, where each edge is in the graph with probability p = p(n) and every two edges 
are drawn independently.

This model was used in the analyses of Clique Cover by Bollobás et al. [5] and Frieze and Reed [13]. For a constant edge 
probability 0 < p < 1 w.h.p., the number of cliques needed to cover the graph tends to infinity. Consequently, if we fix the 
number k of such cliques, most instances will be no-instances. This can be stated more rigorously as follows.
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