J. Parallel Distrib. Comput. 98 (2016) 8-24

Contents lists available at ScienceDirect

PARALLELAND
DISTRIBUTED
COMPUTING

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Coping with recall and precision of soft error detectors” @CmssMark
Leonardo Bautista-Gomez?, Anne Benoit®, Aurélien Cavelan®, Saurabh K. Raina®,
Yves Robert™, Hongyang Sun >*

2 Argonne National Laboratory, USA

b Ecole Normale Superieure de Lyon & INRIA, France
¢ Jaypee Institute of Information Technology, India

4 University of Tennessee Knoxville, USA

HIGHLIGHTS

e Resilience algorithms to cope with silent errors for HPC applications.
e Characterization of optimal patterns using partial error detectors.

o Imprecise detectors offer limited usefulness.

e Optimization problem is NP-complete with multiple detector types.
e Construction of an FPTAS and a greedy approximation algorithm.

ARTICLE INFO ABSTRACT

Article history:

Received 18 December 2015
Received in revised form

6 July 2016

Accepted 22 July 2016
Available online 29 July 2016

Many methods are available to detect silent errors in high-performance computing (HPC) applications.
Each method comes with a cost, a recall (fraction of all errors that are actually detected, i.e., false
negatives), and a precision (fraction of true errors amongst all detected errors, i.e., false positives). The
main contribution of this paper is to characterize the optimal computing pattern for an application:
which detector(s) to use, how many detectors of each type to use, together with the length of the
work segment that precedes each of them. We first prove that detectors with imperfect precisions offer
limited usefulness. Then we focus on detectors with perfect precision, and we conduct a comprehensive
complexity analysis of this optimization problem, showing NP-completeness and designing an FPTAS
(Fully Polynomial-Time Approximation Scheme). On the practical side, we provide a greedy algorithm,

Keywords:
Fault tolerance
High-performance computing

Silent data corruption
Partial verification
Recall and precision
Exascale

whose performance is shown to be close to the optimal for a realistic set of evaluation scenarios. Extensive
simulations illustrate the usefulness of detectors with false negatives, which are available at a lower cost
than the guaranteed detectors.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Failures in high-performance computing (HPC) systems have
become a major issue as the number of components proliferates.
Indeed, future exascale platforms are expected to be composed
of hundreds of thousands of computing nodes [25]. Even if each
individual node provides an optimistic mean time between failures
(MTBF) of, say 100 years, the whole platform will experience

A preliminary version of this paper has appeared in the Proceedings of the IEEE
International Conference on High Performance Computing, December 2015.
* Corresponding author.
E-mail address: hongyang.sun@ens-lyon.fr (H. Sun).

http://dx.doi.org/10.1016/j.jpdc.2016.07.007
0743-7315/© 2016 Elsevier Inc. All rights reserved.

a failure around every few hours on average, which is shorter
than the execution time of most HPC applications. Thus, effective
resilient protocols will be essential to achieve efficiency.

The de-facto general-purpose error recovery technique in HPC
is checkpointing and rollback recovery [18,29]. Such protocols
employ checkpoints to periodically save the state of a parallel
application so that when an error strikes some process, the
application can be restored to one of its former states. However,
checkpoint/restart assumes instantaneous error detection, and
therefore applies to fail-stop errors. Silent errors, a.k.a. silent
data corruptions (SDC), constitute another source of failures in
HPC, whose threat can no longer be ignored [38,42,36]. There are
several causes of silent errors, such as cosmic radiation, packaging
pollution, among others. In contrast to a fail-stop error whose


http://dx.doi.org/10.1016/j.jpdc.2016.07.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.07.007&domain=pdf
mailto:hongyang.sun@ens-lyon.fr
http://dx.doi.org/10.1016/j.jpdc.2016.07.007

L. Bautista-Gomez et al. / J. Parallel Distrib. Comput. 98 (2016) 8-24 9

vl C m |\__)| e |T/—1| M 1 e
Por  wr wa

— < < ?
w1 wo ws Time

Fig. 1. A periodic pattern (highlighted in red) with three segments, two partial
verifications and a verified checkpoint. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

detection is immediate, a silent error is identified only when the
corrupted data leads to an unusual application behavior. Such
detection latency raises a new challenge: if the error struck before
the last checkpoint, and is detected after that checkpoint, then the
checkpoint is corrupted and cannot be used for rollback.

In order to avoid corrupted checkpoints, an effective approach
consists in employing some verification mechanism and combin-
ing it with checkpointing [19,39,1]. The simplest protocol with
this approach would be to execute a verification procedure before
taking each checkpoint. If the verification succeeds, then one can
safely store the checkpoint. Otherwise, it means that an error has
struck since the last checkpoint, which was duly verified, and one
can safely recover from that checkpoint to resume the execution of
the application. Of course, more sophisticated protocols can be de-
signed, by coupling multiple verifications with one checkpoint, or
interleaving multiple checkpoints and verifications [1,9]. The op-
timal parameter (e.g., number of verifications per checkpoint) in
these protocols would be determined by the relative cost of exe-
cuting a verification.

In practice, not all verification mechanisms are 100% accurate
and at the same time admit fast implementations. In fact,
guaranteeing accurate and efficient detection of silent errors
for scientific applications is one of the hardest challenges
towards extreme-scale computing [15,16]. Indeed, thorough and
general-purpose error detection is usually very costly, and often
involves expensive techniques, such as replication [30] or even
triplication [35]. Many applications have developed specific
verification mechanisms that leverage detailed knowledge of the
physics behind the simulation to determine whether the output
of a simulation is corruption-free or not. While such application-
specific mechanisms do not detect the totality of SDC affecting
the hardware, they can guarantee to detect all the corruptions
relevant for the end user, thus they can be called arguably
perfect detectors or guaranteed verifications, at least from the
user’s perspective. For many parallel applications, alternative
techniques exist that are capable of detecting silent errors but with
lower accuracy. We call these techniques partial verifications. One
example is the lightweight SDC detector based on data dynamic
monitoring [3], designed to recognize anomalies in HPC datasets
based on physical laws and spatial interpolation. Similar fault
filters have also been designed to detect silent errors based on time
series predictions [11]. Although not completely accurate, these
partial verification techniques nevertheless cover a substantial
number of silent errors, and more importantly, they incur very low
overheads. These properties make them attractive candidates for
designing more efficient resilient protocols.

Since checkpointing is often expensive in terms of both time
and space required, to avoid saving corrupted data, we only
keep verified checkpoints by placing a guaranteed verification right
before each checkpoint. Such a combination ensures that the
checkpoint contains valid data and can be safely written onto
stable storage. The execution of the application is partitioned
into periodic patterns, i.e., computational chunks that repeat over
time, and that are delimited by verified checkpoints, possibly
with a sequence of partial verifications in between. Fig. 1 shows
a periodic pattern with two partial verifications followed by a
verified checkpoint.

The error detection accuracy of a partial verification can be
characterized by two parameters: recall and precision. The recall,

denoted by r, is the ratio between the number of detected errors
and the total number of errors that occurred during a computation.
The precision, denoted by p, is the ratio between the number of true
errors and the total number of errors detected by the verification.
For example, a basic spatial based SDC detector [3] has been
shown to have a recall value around 0.5 and a precision value
very close to 1, which means that it is capable of detecting half
of the errors with almost no false alarm. A guaranteed verification
can be considered as a special type of partial verification with
recall r* = 1 and precision p* = 1. Each partial verification also
has an associated cost V, which is typically much smaller than
the cost V* of a guaranteed verification. Note that precision and
recall are conflicting objectives as they both are directly related
to the allowed prediction error of the detector. If the prediction
error is too small, then small changes in data behavior will produce
false positives. On the other hand, if the allowed prediction error
is too large, important corruption could be absorbed in the error
corrupting the execution. Thus, one usually sets a target for one
of them (e.g., precision = 0.999) and then measures the recall
obtained with such a level of precision. Therefore, although it is
hard to know in advance the precision and recall of a given detector
for a particular application, it is possible to set a target for either
one, and then quickly measure the complementary parameter.

An application can use several types of detectors with different
overheads and accuracies. For instance, to detect silent errors
in HPC datasets, one has the option of using either a detector
based on time series prediction [11], or a detector using spatial
multivariate interpolation [3]. The first one needs more data to
make a prediction, hence comes at a higher cost. However, its
accuracy is also better. In the example of Fig. 1, the second
verification may use a detector whose cost is lower than that of
the first one, i.e., Vo, < V1, but is expected to have a lower accuracy
as well, i.e., r, < ry and/or p, < py. This is due to the fact that less
accurate detectors perform a much simpler approximation, leading
to more prediction errors.

In this paper, we assume that we have several detector types,
whose costs and accuracies may differ. At the end of each
segment inside the pattern, any detector can be used. The only
constraint is to enforce a guaranteed verification after the last
segment. Given the values of C (cost to checkpoint) and V* (cost
of guaranteed verification), as well as the cost V@, recall r®
and precision p® of each detector type DY, the main question
is which detector(s) to use? Note that we do not assume that
all detectors perform equally on all applications, nor that their
efficiency can be easily predicted for each type of application. The
only requirement is that the accuracy and cost of those detectors
can be measured in a relatively easy way. The objective is to find
the optimal pattern that minimizes the expected execution time
of the application. Intuitively, including more partial verifications
in a pattern allows us to detect more errors earlier in the
execution, thereby reducing the waste due to re-execution; but
that comes at the price of additional overhead in an error-free
execution, and in case of bad precision, of unnecessary rollbacks
and recoveries. Therefore, an optimal strategy must seek a good
tradeoff between error-induced waste and error-free overhead.
The problem is intrinsically combinatorial, because there are many
parameters to choose: the length of the pattern, the number of
partial verifications, and the type and location of each partial
verification within the pattern. Of course, the length of an optimal
pattern will also depend on the platform MTBF w.

Only very specific instances of the problem have received a
solution yet. For example, when there is a single segment in
the pattern without intermediate verification, the only thing to
determine is the size of the segment. In the classical protocol
for fail-stop errors (where verification is not needed), the
optimal checkpointing period is known to be /2uC (where C



Download English Version:

https://daneshyari.com/en/article/431623

Download Persian Version:

https://daneshyari.com/article/431623

Daneshyari.com


https://daneshyari.com/en/article/431623
https://daneshyari.com/article/431623
https://daneshyari.com

