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In this paper we study the structure of suffix trees. Given an unlabeled tree τ on n nodes 
and suffix links of its internal nodes, we ask the question “Is τ a suffix tree?”, i.e., is 
there a string S whose suffix tree has the same topological structure as τ? We place no 
restrictions on S , in particular we do not require that S ends with a unique symbol. This 
corresponds to considering the more general definition of implicit or extended suffix trees. 
Such general suffix trees have many applications and are for example needed to allow 
efficient updates when suffix trees are built online. Deciding if τ is a suffix tree is not an 
easy task, because, with no restrictions on the final symbol, we cannot guess the length of 
a string that realizes τ from the number of leaves. And without an upper bound on the 
length of such a string, it is not even clear how to solve the problem by an exhaustive 
search. In this paper, we prove that τ is a suffix tree if and only if it is realized by a string 
S of length n − 1, and we give a linear-time algorithm for inferring S when the first letter 
on each edge is known. This generalizes the work of I et al. (2014) [15].

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The suffix tree was introduced by Peter Weiner in 1973 [19] and remains one of the most popular and widely used text 
indexing data structures (see [1] and references therein). In static applications it is commonly assumed that suffix trees 
are built only for strings with a unique end symbol (often denoted $), thus ensuring the useful one-to-one correspondence
between leaves and suffixes. In this paper we view such suffix trees as a special case and refer to them as $-suffix trees. Our 
focus is on suffix trees of arbitrary strings, which we simply call suffix trees to emphasize that they are more general than 
$-suffix trees.2 Contrary to $-suffix trees, the suffixes in a suffix tree can end in internal non-branching locations of the tree, 
called implicit suffix nodes.

Suffix trees for arbitrary strings are not only a nice generalization, but are required in many applications. For example 
in online algorithms that construct the suffix tree of a left-to-right streaming text (e.g., Ukkonen’s algorithm [18]), it is 
necessary to maintain the implicit suffix nodes to allow efficient updates. Despite their essential role, the structure of suffix 
trees is still not well understood. For instance, it was only recently proved that each internal edge in a suffix tree can 
contain at most one implicit suffix node [4].

✩ A preliminary version of this work has been presented at the 25th International Workshop on Combinatorial Algorithms in October 2014.
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Fig. 1. Three potential suffix trees. Internal nodes are white, and leaves are black. (a) Is a $-suffix tree, e.g. for ababa$. (b) Is not a $-suffix tree, but it is a 
suffix tree, e.g. for abaabab. (c) Is not a suffix tree.

In this paper we prove some new properties of suffix trees and show how to decide whether suffix trees can have a 
particular structure. Structural properties of suffix trees are not only of theoretical interest, but are essential for analyzing 
the complexity and correctness of algorithms using suffix trees.

Given an unlabeled ordered rooted tree τ and suffix links of its internal nodes, the suffix tree decision problem is to decide 
if there exists a string S such that the suffix tree of S is isomorphic to τ . If such a string exists, we say that τ is a suffix tree
and that S realizes τ . If τ can be realized by a string S having a unique end symbol $, we additionally say that τ is a $-suffix 
tree. See Fig. 1 for an example of a $-suffix tree, a suffix tree, and a tree, which is not a suffix tree.

I et al. [15] recently considered the suffix tree decision problem and showed how to decide if τ is a $-suffix tree in O (n)

time, assuming that the first letter on each edge of τ is also known. Deciding if τ is a suffix tree is much more involved, 
mainly because we can no longer infer the length of a string that realizes τ from the number of leaves. Without an upper 
bound on the length of such a string, it is not even clear how to solve the problem by an exhaustive search. In this paper, 
we give such an upper bound, show that it is tight, and give a linear time algorithm for deciding if τ is a suffix tree.

Our results In Section 2, we start by settling the question of the sufficient length of a string that realizes τ .

Theorem 1. An unlabeled tree τ on n nodes is a suffix tree if and only if it is realized by a string of length n − 1.

As far as we are aware, there were no previous upper bounds on the length of a shortest string realizing τ . The bound 
implies an exhaustive search algorithm for solving the suffix tree decision problem, even when the suffix links are not pro-
vided. In terms of n, this upper bound is tight, since e.g. stars on n nodes are realized only by strings of length at least n −1.

The main part of the paper is devoted to the suffix tree decision problem. We generalize the work of I et al. [15] and 
show in Section 4 how to decide if τ is a suffix tree.

Theorem 2. Let τ be a tree with n nodes, annotated with suffix links of internal nodes and the first letter on each edge. There is an 
O (n) time algorithm for deciding if τ is a suffix tree.

In case τ is a suffix tree, the algorithm also outputs a string S that realizes τ . To obtain the result, we show several new 
properties of suffix trees, which may be of independent interest.

Related work The problem of revealing structural properties and exploiting them to recover a string realizing a data struc-
ture has received a lot of attention in the literature. Besides $-suffix trees, the problem has been considered for border 
arrays [17,7], parameterized border arrays [12–14], suffix arrays [2,9,16], KMP failure tables [8,10], prefix tables [5], cover 
arrays [6], directed acyclic word graphs [2], and directed acyclic subsequence graphs [2].

2. Suffix trees

In this section we prove Theorem 1 and some new properties of suffix trees, which we will need to prove Theorem 2. 
We start by briefly recapitulating the most important definitions.

The suffix tree of a string S is a compacted trie on suffixes of S [11]. Branching nodes and leaves of the tree are called 
explicit nodes, and positions on edges are called implicit nodes. The label of a node v is the string labeling the path from the 
root to v , and the length of this label is called the string depth of v . The suffix link of an internal explicit node v labeled by 
a1a2 . . .am is a pointer to the node u labeled by a2a3 . . .am .

We use the notation v u and extend the definition of suffix links to leaves and implicit nodes as well. We will refer 
to nodes that are labeled by suffixes of S as suffix nodes. All leaves of the suffix tree are suffix nodes, and unless S ends 
with a unique symbol $, some implicit nodes and internal explicit nodes can be suffix nodes as well. Suffix links for suffix 
nodes form a path starting at the leaf labeled by S and ending at the root. Following [4], we call this path the suffix chain.
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