
Journal of Discrete Algorithms 14 (2012) 13–20

Contents lists available at SciVerse ScienceDirect

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

Skip lift: A probabilistic alternative to red–black trees ✩

Prosenjit Bose, Karim Douïeb ∗, Pat Morin

School of Computer Science, Carleton University, Herzberg Building, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 8 December 2011

Keywords:
Data structure
Dictionary
Skip list
Finger search

We present the Skip lift, a randomized dictionary data structure inspired by the skip list
[Pugh’90, Comm. of the ACM]. Similar to the skip list, the skip lift has the finger search
property: given a pointer to an arbitrary element f , searching for an element x takes
expected O (log δ) time where δ is the rank distance between the elements x and f . The
skip lift uses nodes of O (1) worst-case size (for a total of O (n) worst-case space usage) and
it is one of the few efficient dictionary data structures that performs an O (1) worst-case
number of structural changes (pointers/fields modifications) during an update operation.
Given a pointer to the element to be removed from the skip lift the deletion operation
takes O (1) worst-case time.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The dictionary problem is fundamental in computer science. It asks for a data structure in the pointer machine model
that stores a totally ordered set S of n elements and supports the operations search, insert and delete. A large number of
data structures optimally solve this problem in worst-case O (log n) time per operation. Some of them guarantee an O (1)

worst-case number of structural changes (pointers/fields modifications) after an insertion or a deletion operation [12,19,11,
13,10,6]. Note that a structural change takes O (1) time.

Typically the update operations that is insert and delete, are performed in two phases: first, search for the position
where the update has to take place. Second, perform the actual update and restore the balance of the structure. When
the position where the new element has to be inserted or deleted is already known then the first phase of an update
could be avoided. In general the first phase is considered to be part of the search operation. A dictionary that guarantees
an O (1) worst-case number of structural changes per update does not necessary quickly perform the second phase of the
update. Much research effort has been aimed at improving the worst-case time taken by the second phase of the update:
Levcopoulos and Overmars [13] presented the first search tree that takes O (1) worst-case time for this second phase of
the update. Later Fleischer [10] simplified this result. Brodal et al. [6] additionally guaranteed that such structures can also
have the finger search property in worst-case time. These structures however are quite complicated and not really practical.

On the other hand, most randomized dictionaries are simple, practical and achieve the same performance as the result
of Brodal et al. [6] in the expected sense. In the worst-case though their performance is far from optimal. Here we develop
a simple randomized dictionary, called a skip lift, inspired by the skip list [18], that improves the worst-case performance of
the second phase of the update operations. Namely we obtain a structure that has the finger search property in expectation
and performs an O (1) worst-case number of structural changes per update. Given a pointer to the element to be removed
from the skip lift, the deletion operation takes O (1) worst-case time.

✩ Research partially supported by NSERC and MRI.

* Corresponding author.
E-mail addresses: jit@cg.scs.carleton.ca (P. Bose), karim@cg.scs.carleton.ca (K. Douïeb), morin@cg.scs.carleton.ca (P. Morin).
URL: http://cg.scs.carleton.ca (K. Douïeb).

1570-8667/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2011.12.017

http://dx.doi.org/10.1016/j.jda.2011.12.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
mailto:jit@cg.scs.carleton.ca
mailto:karim@cg.scs.carleton.ca
mailto:morin@cg.scs.carleton.ca
http://cg.scs.carleton.ca
http://dx.doi.org/10.1016/j.jda.2011.12.017


14 P. Bose et al. / Journal of Discrete Algorithms 14 (2012) 13–20

Fig. 1. a. Skip list, b. Skip lift.

In Section 1.1 we describe the original skip list dictionary. In Section 1.2 we mention some work related to the skip list
dictionary. In Section 2 we introduce our new skip lift data structure. In Section 3 we show how to enhance the skip lift
structure to allow a simple finger search. Finally, in Section 4, we give an overview of some classical randomized dictionary
data structures. For each of them we briefly describe its construction and how the dictionary operations are performed. We
show that, for these classical randomized dictionaries, in some situations Ω(n) structural changes are necessary to perform
the update operations.

1.1. Skip list

The skip list of Pugh [18] was introduced as a probabilistic alternative to balanced trees. It is a dictionary data structure
storing a totally ordered set S of n elements that supports insertion, deletion and search operations in O (log n) expected
time. Additionally the expected number of structural changes (pointer modifications) performed on the skip list during an
update is O (1). A skip list is built in levels, the bottom level (level 1) is a sorted linked list of all elements in S . The
higher levels of the skip list are build iteratively. Each level is a sublist of the previous one where each element of a level
is copied to the level above with (independent) probability p. The copies of an element are linked between adjacent levels
(see Fig. 1.a).

The height h(s) of an element s is defined as the highest level where s appears. The height H(L) of a skip list L is
defined as maxs∈L h(s) and the depth d(s) of s is H(L)− h(s). The expected height of a skip list is by definition O (log1/p n).
Adjacent elements on the same level are connected by their left and right pointers. The copies of the same element from
two adjacent levels are connected by their up and down pointers.

1.1.1. Search
To search for a given element x in a skip list we start from the highest level of the sentinel element which has a key

value −∞. We follow the right pointers on a same level until we are about to overshoot the element x that is until the
element on the right has a key value strictly greater than x. Then we go down one level and we iterate the process until x is
found or until we have reached the lowest level (in this case we know that x is not in S and we have found its predecessor).

1.1.2. Updates
To insert an element x in a skip list we first determine its height in the structure. Then we start a search for x in the

list to find the position where x has to be inserted. During the search we update the pointers of the copies of the elements
that are adjacent to a newly created copy of x.

The deletion of an element x from a skip list is straightforward given the insertion process. We first search for x and we
delete one by one all its copies while updating the pointers of the copies of elements that are adjacent to a copy of x.

1.2. Related work

Precise analysis of the expected search cost in a skip list has been extensively studied, we refer to the thesis of Papadakis
for more information [17]. Several variants of the skip list have been considered: Munro et al. [16] developed a deterministic
version of the skip list, based on B-trees [3], that performs each dictionary operation in worst-case O (lg n) time. Under the



Download English Version:

https://daneshyari.com/en/article/431638

Download Persian Version:

https://daneshyari.com/article/431638

Daneshyari.com

https://daneshyari.com/en/article/431638
https://daneshyari.com/article/431638
https://daneshyari.com

