
Journal of Discrete Algorithms 14 (2012) 91–106

Contents lists available at SciVerse ScienceDirect

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

Worst-case efficient single and multiple string matching on packed texts
in the word-RAM model

Djamal Belazzougui 1

LIAFA, Univ. Paris Diderot, Paris 7, 75205 Paris Cedex 13, France

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 7 December 2011

Keywords:
Independent set
Fixed-parameter tractability
Hereditary class of graphs
Modular decomposition

In this paper, we explore worst-case solutions for the problems of single and multiple
matching on strings in the word-RAM model with word length w . In the first problem, we
have to build a data structure based on a pattern p of length m over an alphabet of size
σ such that we can answer to the following query: given a text T of length n, where each
character is encoded using logσ bits return the positions of all the occurrences of p in T
(in the following we refer by occ to the number of reported occurrences). For the multi-
pattern matching problem we have a set S of d patterns of total length m and a query on
a text T consists in finding all positions of all occurrences in T of the patterns in S . As
each character of the text is encoded using logσ bits and we can read w bits in constant
time in the RAM model, we assume that we can read up to Θ(w/ logσ) consecutive
characters of the text in one time step. This implies that the fastest possible query time
for both problems is O (n logσ

w + occ). In this paper we present several different results
for both problems which come close to that best possible query time. We first present
two different linear space data structures for the first and second problem: the first one
answers to single pattern matching queries in time O (n(1

m + logσ
w)+ occ) while the second

one answers to multiple pattern matching queries to O (n(
log d+log y+log logm

y + logσ
w) + occ)

where y is the length of the shortest pattern. We then show how a simple application of
the four Russian technique permits to get data structures with query times independent of
the length of the shortest pattern (the length of the only pattern in case of single string
matching) at the expense of using more space.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The problems of string pattern matching and multiple string pattern matching are classical algorithmic problems in the
area of pattern matching. In the multiple string matching problem, we have to preprocess a dictionary of d strings of total
length m characters over an alphabet of size σ so that we can answer to the following query: given any text of length n,
find all occurrences in the text of any of the d strings. In the case of single string matching, we simply have d = 1.

The textbook solutions for the two problems are the Knuth–Morris–Pratt [22] (KMP for short) automaton for the single
string matching problem and the Aho–Corasick [1] automaton (AC for short) for the multiple string matching problem. The
AC automaton is actually a generalization of the KMP automaton. Both algorithms achieve O (n + occ) query time (where occ
denotes the number of reported occurrences) using O (m log m)2 bits of space3 (both automatons are encoded using O (m)

pointers occupying log m bits each). The query time of both algorithms is in fact optimal if the matching is restricted to read

1 This work is supported by the French ANR-2010-COSI-004 project MAPPI.
2 In this paper log x is defined as �log2(x + 2)�.
3 In this paper we quantify the space usage in bits rather than in words as is usual in other papers.

1570-8667/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2011.12.011

http://dx.doi.org/10.1016/j.jda.2011.12.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
http://dx.doi.org/10.1016/j.jda.2011.12.011

92 D. Belazzougui / Journal of Discrete Algorithms 14 (2012) 91–106

all the characters of the text one by one. However as it was noticed in previous works, in many cases it is actually possible
to avoid reading all the characters of the text and hence achieve a better performance. This stems from the fact that by
reading some characters at certain positions in the text, one could conclude whether a match is possible or not without the
need to read all the characters. This has led to various algorithms with so-called sublinear query time assuming that the
characters of the patterns and/or the text are drawn from some random distribution. The first algorithm which exploited
that fact was the Boyer–Moore algorithm [7]. Subsequently other algorithms with provably average-optimal performance
were devised. Most notably the BDM and BNDM for single string matching and the multi-BDM [13,11] and multi-BNDM
[26] for multiple string matching. Those algorithms achieve O (n logm

m logσ + occ) time for single string matching (which is

optimal according to the lower bound shown in [32]) and O (n log d+log y
y logσ + occ) time for multiple string matching, where y is

the length of the shortest string in the set. Still in the worst case those algorithms may have to read all the text characters
and thus have Ω(n + occ) query time (actually many of those algorithms have an even worse query time in the worst-case,
namely Ω(nm + occ)).

A general trend has appeared in the last two decades when many papers have appeared trying to exploit the power of
the word-RAM model to speed-up and/or reduce the space requirement of classical algorithms and data structures. In this
model, the computer operates on words of length w and usual arithmetic and logic operations on the words all take one
unit of time.

In this paper we focus on the worst-case bounds in the RAM model with word length w . That is we try to improve on
the KMP and AC in the RAM model assuming that we have to read all the characters of the text which are assumed to be
stored in a contiguous area in memory using logσ bits per characters. That means that it is possible to read Θ(w/ logσ)

consecutive characters of the text in O (1) time. Thus given a text of length n characters, an optimal algorithm should
spend O (n logσ

w + occ) time to report all the occurrences of matching patterns in the text. The main result of this paper is a
worst-case efficient algorithm whose performance is essentially the addition of a term similar to the average optimal time
presented above plus the time necessary to read all the characters of the text in the RAM model. Unlike many other papers,
we only assume that w = Ω(log(n +m)), and not necessarily that w = Θ(log(n +m)). That is we only assume that a pointer
to the manipulated data (the text and the patterns), fit in a memory word but the word length w can be arbitrarily larger
than log m or log n. This assumption makes it possible to state time bounds which are independent of m and n, implying
larger speedups for small values of m and n.

In his paper Fredriksson presents a general approach [18] which can be applied to speed-up many pattern matching
algorithms. This approach which is based on the notion of super-alphabet relies on the use of tabulation (four Russian
technique). If this approach is applied to our problems of single and multiple string matching queries, given an available
precomputed space t , we can get a logσ (t/m) factor speedup. In his paper [6], Bille presented a more space efficient method
for single string matching queries which accelerates the KMP algorithm to answer to queries in time O (n

logσ n + occ) using
O (nε + m logm) bits of space for any constant ε such that 0 < ε < 1. More generally, the algorithm can be tuned to use an
additional amount t of tabulation space in order to provide a logσ t factor speedup.

At the end of his paper, Bille asked two questions: the first one was whether it is possible to get an acceleration
proportional to the machine word length w (instead of log n or log t) using linear space only. The second one was whether
it is possible to obtain similar results for the multiple string matching problem. We give partial answers to both questions.
Namely, we prove the following two results:

1. Our first result states that for d strings of minimal length y, we can construct an index which occupies linear space and
answers to queries in time O (n(

log d+log y+log logm
y + logσ

w) + occ). This result implies that we can get a speedup factor
w

(log d+log w) logσ if y � w
logσ and get the optimal speedup factor w

logσ if y � (log d + log w) w
logσ .

2. Our second result implies that for d patterns of arbitrary lengths and an additional t bits of memory, we can obtain a
factor logσ t

log d+log logσ t+log logm speedup using O (m logm + t) bits of memory.

Our first result compares favorably to Bille’s and Fredriksson approaches as it does not use any additional tabulation space.
In order to obtain any significant speedup, the algorithms of Bille and Fredriksson require a substantial amount of space
t which is not guaranteed to be available. Even if such an amount of space was available, the algorithm could run much
slower in case m � t as modern hardware is made of memory hierarchies, where random access to large tables which do
not fit in the fast levels of the hierarchy might be much slower than access to small data which fit in faster levels of the
hierarchy.

Our second result is useful in case the shortest string is very short and thus, the first result do not provide any speedup.
The result is slightly less efficient than that of Bille [6] for single string matching, being a factor log logσ t + log log m slower
(compared to the logσ t speedup of Bille’s algorithm). However, our second result efficiently extends to multiple string
matching queries, while Bille’s algorithms seems not to be easily extensible to multiple string matching queries.

The third and fourth results in this paper are concerned with single string matching, where we can have solutions with a
better query time than what can be obtained by using the first and second result for matching a single pattern. In particular
our results imply the following:

Download	English	Version:

https://daneshyari.com/en/article/431645

Download	Persian	Version:

https://daneshyari.com/article/431645

Daneshyari.com

https://daneshyari.com/en/article/431645
https://daneshyari.com/article/431645
https://daneshyari.com/

