
J. Parallel Distrib. Comput. 77 (2015) 26–40

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Time hybrid total order broadcast: Exploiting the inherent synchrony
of broadcast networks
Daniel Cason, Luiz E. Buzato ∗
Institute of Computing, University of Campinas, Av. Albert Einstein 1251, 13083-852, Campinas, São Paulo, Brazil

h i g h l i g h t s

• We give experimental evidence of the inherent synchrony exhibited by broadcast networks.
• We investigate the implications of synchrony to the design of total order broadcasts.
• We detail a novel synchronous total order protocol (THyTOB) and its implementation.
• We implement and assess a rounds protocol that serves as the substrate for THyTOB.
• THyTOB’s performance is on a par with protocols designed for purely asynchronous systems.

a r t i c l e i n f o

Article history:
Received 12 March 2014
Received in revised form
21 July 2014
Accepted 29 October 2014
Available online 6 November 2014

Keywords:
Total order broadcast
Broadcast networks
Asynchronous systems
Synchronous systems
Cluster environments
Fault tolerance
Consensus

a b s t r a c t

Total order broadcast is a fundamental communication primitive for the construction of highly-available
systems. Informally, the primitive guarantees that messages sent by a group of processes are delivered
to all processes in the same order. This paper investigates the design and performance of a very simple
synchronous total order broadcast that is built atop of an asynchronous distributed system based on a
broadcast network. Our Time Hybrid Total Order Broadcast (THyTOB) explores the inherent synchrony of
the broadcast network to build a total order for themessages, while ensuring safety under asynchrony and
in thepresence of process failures.Weassess theperformance of THyTOB in anEthernet-based commodity
cluster, and show that it is on a par with the performance of other well-known, and more complex total
order broadcast protocols inherently designed for the asynchronous model.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Informally, total order broadcasts allow processes to send mes-
sages with the guarantee that all processes deliver messages in
the same order. In this paper, we investigate the design and per-
formance of a very simple synchronous total order broadcast that
is built atop of an asynchronous distributed system based on a
broadcast network. We show that the exploration of the inherent
synchrony of the network can lead to a Time Hybrid Total Or-
der Broadcast (THyTOB) protocol with good performance and
reliability.

Broadcast networks, e.g., Ethernet or Infiniband, are adopted
by the vast majority of current datacenter clusters and high-
performance computers [1]. However, even with the algorithmic

∗ Corresponding author.
E-mail addresses: cason@ic.unicamp.br (D. Cason), buzato@ic.unicamp.br

(L.E. Buzato).

[23] and practical [11,13,19,46] importance of total order broad-
cast protocols, to the best of our knowledge, no one has tried to
assess the performance of a synchronous total order protocol built
atop broadcast networks. In this context, the main contributions
of our work are: (i) a characterization of the inherent synchrony
presented by broadcast networks; and (ii) the description and as-
sessment of THyTOB, a novel total order broadcast that uses the
inherent synchrony of the network as the key feature to simplify
its design and implementation.

The characterization of the inherent synchrony of a broadcast
network is carried out through experiments that systematically
show that asynchronous distributed systems can be used as a foun-
dation to emulate synchronous computations. A simple protocol is
used to generate rounds of synchronous communication atop of
the asynchronous distributed system. The accuracy and efficiency
of the rounds generated are measured under varying workloads
and scales to ensure that they meet the synchronization require-
ments of THyTOB. The picture that emerges from the experiments

http://dx.doi.org/10.1016/j.jpdc.2014.10.012
0743-7315/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2014.10.012
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.10.012&domain=pdf
mailto:cason@ic.unicamp.br
mailto:buzato@ic.unicamp.br
http://dx.doi.org/10.1016/j.jpdc.2014.10.012


D. Cason, L.E. Buzato / J. Parallel Distrib. Comput. 77 (2015) 26–40 27

allows us to conclude that it is possible to organize the computa-
tions of the asynchronous distributed system as a sequence of syn-
chronous rounds.

The description of THyTOB – its specification, analysis of its
progress and safety properties, and its performance evaluation –
shows that it is on a parwith the performance of otherwell-known
total order broadcast protocols. THyTOB is latency optimal, requir-
ing only two communication steps to deliver totally ordered mes-
sages. When set side by side with other implementations of total
order broadcast, some based on Paxos [37], such as Treplica [48]
or Ring-Paxos [43], other based on virtual synchrony [9], such
as Spread [3] or LCR [29], THyTOB fares well both in terms of
throughput and latency. Our study compares THyTOB to six other
total order broadcast protocols: THyTOB ranks third in terms of
throughput and first in terms of latency. In our comparison, the top
performer in terms of throughput can sustain 950 Mbit/s with an
average latency of 4.6mswhile THyTOB can deliver 525Mbit/s but
with a very precise latency of 2.3 ms. The results presented in the
paper show that THyTOB fills an important gap in the throughput-
latency spectrum of total order broadcast protocols designed for
broadcast networks.

THyTOB adds to a trend towards the revision of the TCP/IP pro-
tocol stack for use in datacenters and clouds because of the benefits
the revised protocols can bring to the performance and scalability
of distributed applications. For instance, the synchronous nature
of the datacenter network environment has allowed the imple-
mentation of a time-divisionmultiple access (TDMA)MAC layer for
commodity Ethernet that allows end hosts to dispense with TCP’s
congestion control [47]. The performance and simplicity of THyTOB
makes it a good alternative to more complex protocols for several
classes of cluster applications. For example, it can be used to im-
plement an MPI Broadcast (MPI_BCAST) primitive equivalent to
the one proposed by [31], but based on a much simpler and more
efficient algorithm.

The design of THyTOB explores the fact that the processes and
the broadcast network of asynchronous distributed systems have
an inherent tendency to behave as synchronous distributed sys-
tems during reasonably long periods of time; Section 2 contains the
definitions of both models of computation. Section 3 discusses in
detail the design and implementation of THyTOB; special attention
is given to the role of synchrony and asynchrony in the behavior of
the protocol. Section 4 assesses the performance of THyTOB, and
compares it with the performance of other well-known total order
broadcasts. This section also discusses the different design princi-
ples that were used in each of the protocols and analyzes the in-
fluence each of them had on the performance and fault-tolerance
of the protocols. From the perspective of THyTOB, the first three
sections are self-contained because a complete understanding of
the protocol can be obtainedwithout looking into the experiments
that demonstrate the inherent synchrony exhibited by broadcast
networks. Nevertheless, the feasibility of the sub-systems that im-
plement both models is verified experimentally in Section 5. Sec-
tion 6 surveys themain classes of total order protocols designed so
far and compares them with THyTOB; the section also comments
on the relation of our time hybrid system and the concept of net-
work synchronizers. Section 7 closes the paper; it summarizes our
results and discusses briefly why we consider the principles that
guide THyTOB’s design an interesting contribution to the engineer-
ing of total order broadcast protocols, given the vast increase in the
use of broadcast networks as key components of distributed sys-
tems.

2. Models of computation

In this section we define the asynchronous and synchronous
models of computation, including their failure assumptions.

2.1. The asynchronous model

An asynchronous distributed system is composed of a fixed set
of n processes connected by a broadcast network. Processes are
asynchronous because there is no bound in the time they take
to perform each of their computing steps. Processes can fail by
crashing (crash-stop), but they never perform incorrect actions.
Communication is accomplished by message passing, with the
broadcast network offering a best-effort broadcast primitive. So,
communication is one-to-all, asynchronous and unreliable: mes-
sages can be lost, duplicated, received out of order, or arbitrarily
delayed, but we assume that they cannot be corrupted.

Processes have access to local clocks, which display monotoni-
cally increasing values. The clocks are not synchronized, so the de-
viations between the processors’ clocks can be arbitrarily large, but
we assume they do progress most of the time within a narrow en-
velope of real time. Such clocks are useful to set timeouts, but we
are particularly interested in using them to schedule the execu-
tion of periodic tasks: given a period ∆, the processes are then ex-
pected to be awakened to execute a task approximately every ∆

units of real time. As the processes are asynchronous, there is no
guarantee that periodicity is maintained at every moment of the
computation; but when considering sufficiently long periods of
computation, the average interval of real time between successive
invocations of the scheduled task is expected to be reasonably close
to ∆.

In addition to this clock assumption, we aggregate to themodel
an empirical hypothesis regarding its timing behavior. Given that
the load applied to the system is controlled, the time it takes to
complete a broadcast of a message with up to S bytes is likely
to be bound by a constant δS . This delay includes the time the
process takes to perform a processing phase, which results in the
broadcast of a message, and the latency to deliver the message to
all non-faulty processes. Observe that this assumption does not
impose bounds to the processing delays or network latencies: it
only enables us to specify maximum delays for the actions to take
place in the system, that are respected with high probability by
their components.

Whenever the one-way timeout delay δS is violated we say
that there was a performance failure. There are no bounds on the
frequency with which performance failures can occur, or in the
number of processes or channels that are affected by such failures.
However, for the sake of progress, we assume that there is a time
beyond which all broadcasts initiated by non-faulty processes are
completed within δS . What this means is that after a period of
instability there is always a time interval of some given minimum
length inwhich the systembehaves stably, that is, a period inwhich
the number of performance failures has an upper bound.

Thus, we have complemented the well-known asynchronous
crash-stop model with unreliable broadcast channels using two
assumptions borrowed from the timed-asynchronous system
model [20]: access to local clocks with bounded drift rates, and
probabilistic maximum delays δS for the messages as a function of
their size. The validity of these additional assumptions is restricted
to periods of stability during which processes and channels exhibit
a (predominantly) synchronous behavior.

2.2. The synchronous model

In the synchronousmodel the processes have access towhatwe
call a logical global clock. It is a clock, in the sense that it periodically
ticks at discrete instants of time, and it is global, as it provides a
common source of time to the processes. It is a logical mechanism
that generates ticks based on the processes’ local physical clocks,
and on the exchange of synchronization messages.



Download English Version:

https://daneshyari.com/en/article/431696

Download Persian Version:

https://daneshyari.com/article/431696

Daneshyari.com

https://daneshyari.com/en/article/431696
https://daneshyari.com/article/431696
https://daneshyari.com

