J. Parallel Distrib. Comput. 77 (2015) 95-104

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Mutual inclusion in asynchronous message-passing
distributed systems

Hirotsugu Kakugawa

CrossMark

Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan

HIGHLIGHTS

e The mutual inclusion problem is a problem such that at least one process is in critical section.
e This paper proposes two distributed solutions in the asynchronous message passing model.
e We discuss the relation between mutual inclusion and mutual exclusion.

ARTICLE INFO

ABSTRACT

Article history:

Received 29 November 2013
Received in revised form

17 October 2014

Accepted 2 January 2015
Available online 8 January 2015

Keywords:

Distributed algorithm

Mutual exclusion mutual inclusion
Process synchronization

In the mutual inclusion problem, at least one process is in the critical section. However, only a solution
for two processes with semaphores has been reported previously. In this study, a generalized problem
setting is formalized and two distributed solutions are proposed based on an asynchronous message-
passing model. In the local problem setting (the local mutual inclusion problem), for each process P, at
least one of P and its neighbors must be in the critical section. For the local problem setting, a solution
is proposed with O(A) message complexity, where A is the maximum degree (number of neighboring
processes) of a network. In a global setting (the global mutual inclusion problem), at least one of the
processes must be in the critical section. For the global problem setting, a solution is proposed with 0(|Q|)
message complexity, where |Q | is the maximum size for the quorum of a coterie used by the algorithm,
which is typically |Q| = +/n, where n is the number of processes in a network.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

This study considers a problem called distributed mutual inclu-
sion, which is complementary to the distributed mutual exclusion
problem. Informally, in the mutual inclusion problem (abbreviated
to mutin problem), at least one process is in the critical section (ab-
breviated to CS), whereas at most one process is in the CS in the
mutual exclusion problem (abbreviated to mutex problem). To the
best of the author’s knowledge, [10] is the only previous study of
the mutin problem. In [10], a solution was proposed for only two
processes with semaphores. The present study formalizes a gener-
alized problem setting and two distributed solutions are proposed
based on an asynchronous message-passing model.

After the first study [10] of mutual inclusion was published, the
problem of mutual inclusion was ignored by the research com-
munity. This was mainly because there were no known practical
applications of mutual inclusion. However, the applications of mu-
tual inclusion now include the effective maintenance of clustering

E-mail address: kakugawa@ist.osaka-u.ac.jp.

http://dx.doi.org/10.1016/j.jpdc.2015.01.003
0743-7315/© 2015 Elsevier Inc. All rights reserved.

in sensor networks and the replacement of servers in server/client
systems.

The main motivation for studying the distributed mutin prob-
lem is the theoretical formulation of handover for cluster heads in
sensor networks. A cluster head process (node) often changes its
role to become an ordinary process (and vice versa) while main-
taining a clustering condition to equalize the energy consumption
between processes. Suppose that a cluster head process is in the
CS and that an ordinary process is in the non-CS. Mutual inclusion
then maintains a clustering condition dynamically, i.e., each pro-
cess is a cluster head or at least one of its neighbor is a cluster head.
The handover problem for cluster heads is formulated as a process
synchronization problem in the present study.

In this study, generalized settings for the mutin problem are
proposed, i.e., the ¢-mutin problem, where at least £ processes
are in the CS. Local and global settings are also proposed for the
1-mutin problem. In the local £-mutin problem on network G =
(V,E), foreach P; € V, at least £ processes among P; and its neigh-
bors are in the CS. The global £-mutin problem is a special case of
the local £-mutin problem when G = (V, E) is complete. As a first
step, distributed solutions are proposed for the local and global
1-mutin problems. For the local mutin problem, a solution with

http://dx.doi.org/10.1016/j.jpdc.2015.01.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2015.01.003&domain=pdf
mailto:kakugawa@ist.osaka-u.ac.jp
http://dx.doi.org/10.1016/j.jpdc.2015.01.003

96 H. Kakugawa /]. Parallel Distrib. Comput. 77 (2015) 95-104

0(A) message complexity is proposed, where A is the maximum
degree (number of neighboring processes) of a network. For the
global mutin problem, a solution with O(|Q |) message complexity
is proposed, where |Q | is the maximum size of the quorum of a co-
terie used by the algorithm, which is typically |Q| = +/n, and n is
the number of processes in a network.

The remainder of this paper is organized as follows. Section 2
provides several definitions and problem statements. Section 3
reviews related research and presents some observations on the
relationships between the mutin and mutex problems. Section 4
provides a solution to the local 1-mutin problem. Section 5
gives a solution to the global 1-mutin problem. In Section 6, the
relationship between the 1-mutin problem and the dominating
set is discussed. Section 7 comprises a summary of this study and
suggestions for future research.

2. Preliminary

Let G = (V, E) be agraph, where V = {P{, P, ..., P,} isaset of
processes and E C V x V is a set of bidirectional communication
links between a pair of processes. We assume that (P;, Pj) € E
if and only if (P;, P;) € E. Each communication link is FIFO. We
consider that G is a distributed system. The number of processes in
G = (V,E) is denoted by n(= |V]). A set of neighbors of P; € V is
denoted by N;, where N; = {P; | (P;, P;) € E}. We assume that the
distributed system is asynchronous, i.e., there is no global clock. A
message is delivered eventually but there is no upper bound on the
delay time and the running speed of a process may vary.

We assume that each process P; € V maintains a variable
state; € {InCS, NonCS} and that the initial value of each state; is
InCS. The behavior of each process P; is as follows, where we as-
sume that P; eventually invokes Entry-Sequence when it is in the
NonCS state.

/% InCS %/

while true {
Exit-Sequence;
/#* NonCS x/
Entry-Sequence;
/* InCS %/

}

Definition 1 (The ¢-mutin Problem). A protocol & solves the
£-mutin problem on network G = (V, E), where 1 < ¢ < n, ifand
only if the following two conditions hold. Safety: For each process
P; € V, at least £ of P; or its neighbor P; € N; are in the InCS state at
any time. Liveness: Each process P; € V enters the NonCS and InCS
states alternately infinitely often.

The ¢-mutual inclusion problem requires the design of a
protocol for performing the Exit-Sequence and Entry-Sequence.
We refer to this problem as the local £-mutin problem, which
contrasts with the global ¢-mutin problem, where the latter is a
special case when G is a complete network, i.e., N; = V \ {P;} for
eachP; e V.

The typical performance measures applied to mutin algorithms
are as follows.

e Message complexity: the number of message exchanges trig-
gered by a pair of invocations of the Exit-Sequence and Entry-
Sequence.

e Concurrency: the minimum number of processes that are in the
CS simultaneously.

e Waiting time': the time period between the invocation of the
Exit-Sequence and completion of the exit from the CS.

1 The name of this performance measure differs among previous studies and
some (e.g., [33]) refer to this performance measure as the “synchronization delay”.

3. Related work

The mutin problem was proposed in [10], which is the only
previous study to address this problem. A closely related process
synchronization problem is the mutex problem, which has been
studied extensively. In this section, we first observe the relation-
ship between the global mutin and global mutex problems, before
reviewing previous studies of the mutex problem.

3.1. Relationship between mutual inclusion and mutual exclusion

In this subsection, we discuss the relationship between the
global mutin and global mutex problems. There are similarities
between the local mutin and local mutex problems, but we only
consider the global version to simplify the results. Let n > 1 be
integers. The global mutin and mutex algorithms discussed in this
section are implicitly assumed to be algorithms on a network of
size n.

Informally, the global j-mutin and global j-mutex problems are
defined as follows. For each 0 < j < n, where n is the total number
of processes, the global j-mutin problem has at least j processes in
the CS whereas the global j-mutex problem has at most j processes
in the CS.

Let A be an algorithm for global j-mutin or global j-mutex for
some 0 < j < n. By Co-A, we denote a complemented algorithm
of A, which is obtained by swapping the process states, InCS and
NonCS.

We make the following simple observations.

Observation 1. For each j such that 0 < j < n and for each global
Jj-mutin or j-mutex algorithm A, Co-(Co-A) = A holds. O

Observation 2. For each j such that 0 < j < n and for each global
j-mutex algorithm A, Co-A is a global (n — j)-mutin algorithm.

Proof. By A, at most j processes are in the InCS state. Hence, by
Co-A, at most j processes are in the NonCS state, which implies that
at least n — j processes are in the InCS state. O

Observation 3. For each j such that 0 < j < n and for each global
j-mutin algorithm A, Co-A is a global (n — j)-mutex algorithm.

Proof. By A, at least j processes are in the InCS state. Hence, by
Co-A, at least j processes are in the NonCS state, which implies that
at most n — j processes are in the InCS state. O

Hence, mutin and mutex are essentially the same problem,
which is summarized as follows. For each j such‘that 0<j<n,

let 1{1 be a set of global j-mutin algorithms, and E:ﬁlis a set of global
j-mutex algorithms. Let Co-4}, = {Co-A : A € f}}, and Co-&, =
{Co-A: A€ &)

Obsgrvation 4. For eachjsuchthat0 <j <n, o= Co-é?,?_j and
I =Co-€. O

Let £, = Ug<jn &, & = Up<jcn &, Co-4, = {Co-A : A € 4},
and Co-§, = {Co-A: A € &,}.
Observation 5. {, = Co-§, and &, = Co-4,. O

Now, we make the following conclusions.

1. The complexity of the j-mutin problem is the same as the
complexity of the (n — j)-mutex problem.

2. The family of mutin algorithms and the family of mutex
algorithms are complementary.

A study of the distributed j-mutin problem may yield a new
algorithmic framework for the distributed k-mutex problem.

Download English Version:

https://daneshyari.com/en/article/431701

Download Persian Version:

https://daneshyari.com/article/431701

Daneshyari.com

https://daneshyari.com/en/article/431701
https://daneshyari.com/article/431701
https://daneshyari.com

