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a b s t r a c t

Scale range differences between individual assessors will often constitute a non-trivial part of the asses-
sor-by-product interaction in sensory profile data (Brockhoff, 2003, 1998; Brockhoff and Skovgaard,
1994). We suggest a new mixed model ANOVA analysis approach, the Mixed Assessor Model (MAM) that
properly takes this into account by a simple inclusion of the product averages as a covariate in the
modeling and allowing the covariate regression coefficients to depend on the assessor. This gives a more
powerful analysis by removing the scaling difference from the error term and proper confidence limits
are deduced that include scaling difference in the error term to the proper extent. A meta study of
8619 sensory attributes from 369 sensory profile data sets from SensoBase (www.sensobase.fr) is
conducted. In 45.3% of all attributes scaling heterogeneity is present (P-value <0.05). For the 33.9% of
the attributes having a product difference P-value in an intermediate range by the traditional approach,
the new approach resulted in a clearly more significant result for 42.3% of these cases. Overall, the new
approach claimed significant product difference (P-value <0.05) for 66.1% of the attributes compared to
the 60.3% of traditional approach. Still, the new, and non-symmetrical, confidence limits are more often
wider than narrower compared to the classical ones: in 72.6% of all cases.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

Replicated quantitative descriptive sensory data, where I asses-
sors scored J products in K replications, is frequently univariately
analyzed by 2-way fixed analysis of variance (ANOVA) correspond-
ing to the model

Yijk ¼ lþ ai þ mj þ cij þ eijk; eijk � Nð0;r2Þ ð1Þ

where ai is the assessor main effect, i ¼ 1; . . . ; I; mj the product main
effect, j ¼ 1; . . . ; J and cij the panelist-by-product interaction effect
and eijk; k ¼ 1; . . . ;K the random residual error with variance r2.
Often the random panelist version of this, the mixed model ANOVA,

Yijk ¼ lþ ai þ mj þ gij þ eijk

eijk � Nð0;r2Þ; ai � N 0;r2
PAN

� �
; gij � N 0;r2

PAN�PROD

� � ð2Þ

is used for doing statistical inference regarding product differences
and similarities (Lawless & Heymann, 2010; Lea, Næs, & Rødbotten,

1997; Næs, Tomic, & Brockhoff, 2010; Schlich, 1998). Here the
roman letters are used for the random effects and r2

PAN is the vari-
ance of (centered) panelist effects and r2

PAN�PROD is the variance of
panelist-by-product interaction effects. Essentially, this amounts
to using the interaction mean square as error term instead of the
residual error for product information inference. The choice
between having effects related to the assessors as fixed or random
in the model has been discussed in the sensory literature (Lawless,
1998; Lundahl & MacDaniel, 1988; O’Mahony, 1986). In Hunter
(1996) as in Lawless and Heymann (2010) the general approach is
that of the random assessor effect. Whereas both types of analysis
certainly can be done with the proper interpretations of the results,
we believe that most often in sensory QDA applications the random
assessor effect type of interpretations resembles better the usual
purpose of performing the experiment: to achieve at some results
for the products in question that may be generalized to a larger set-
ting than merely the assessors entering the used panel. It is clear
that for this approach to be strictly valid, certain assumptions on
how the replications were actually carried out have to be imposed.
If these are not fulfilled, one would have to go for more complicated
ANOVAs with e.g. a random effect of session and more interactions
in play (see Næs et al., 2010). For this paper we restrict ourselves to
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discussing the 2-way setting as expressed here. We leave for future
work to extend these ideas to situations calling for more complex
structured models. Everything will be expressed for the typical
design in sensory where products have been evaluated more than
once by each assessor, that is, the replicated case. It will be clear
that the non-replicated case can be handled similarly.

The interaction term of the model(s) captures the deviations
from additivity (Panelist + Product) in the data. In other words
the interaction term is modeling the potential individual
differences between the panelists in their scorings of the product
differences. This includes as well differences in individual ranges
of scale use, the scale effect, as real differences in perception of
product differences (disagreement effect).

In the model given in (1) these individual difference effects
enter as many different fixed contributions cij – one for each com-
bination of panelist and product with certain technical restrictions
due to the estimability/uniqueness of these. As such, this model
does not assume any specific structure of these effects. In the
model given in (2) on the other hand, it is assumed that these indi-
vidual contributions gij follow a normal distribution with variance
r2

PAN�PROD.
So, for the univariate statistical analysis of sensory profile data

with the purpose of achieving product information, this has been
used for ages in sensory science and applications. Simultaneously,
there is a large literature on studying and monitoring individual
differences in sensory profile data. Also, there exist various
ad-hoc procedures for how to proceed in a complete analysis pro-
cess (see Schlich, 1997). There has been little or no attempts, how-
ever, to bring together in a common model framework the detailed
modeling of individual differences with the ‘‘random-panelist-
approach’’ of the typical mixed model ANOVA. It is the aim of this
paper to create the modeling basis for this by means of well known
and not too complicated statistical models. The models used are
simple to the degree that they are within the classes of linear
and mixed linear models for normally distributed data.

The benefits of this will be to be able to do improved product
analysis – with higher power of detecting product difference and
more correct product difference confidence bands. It also offers
the basis for a merging of the panel performance analysis with
the product difference analysis. This is beyond the scope of the this
paper but has been pursued in detail in Peltier, Brockhoff, Visalli,
and Schlich (2014).

In section ‘Individual differences and statistical models’, we
introduce and discuss the key statistical models. Next, in section
‘ANOVA decompositions’, we show how simple ANOVA decompo-
sitions can form the basis of the computations as well for the over-
all analysis as for the panelist performance task. In section
‘Statistical inference’, the actual statistical inference procedures
are presented including estimation, overall hypothesis testing
and posthoc hypothesis testing. In section ‘The MAM analysis
approach’, the computational challenges for the MAM analysis
approach as such is discussed together with the presentation of
two adaptations of the scale correction approach of the MAM. In
section ‘Example results’, a detailed analysis example is provided
using the data from the original assessor model paper (Brockhoff
& Skovgaard, 1994) and in section ‘SensoBase investigation’, the
results of the SensoBase meta study are reported. Finally section
‘Summary and discussion’ includes a summary and discussion of
the entire paper including the overall recommendation for how
to analyze sensory data. A number more technical details is given
in three appendices. In Appendix A, more details on the statistical
models and their relations to two other assessor model-like models
are given. Appendix B contains small proofs of the contrast vari-
ance expressions from section ‘Statistical inference’, and Appendix
C contains all the detailed development of the novel confidence
band procedure.

Individual differences and statistical models

The model that we will use as the basis for (the main part of)
the analysis, and the model we give the acronym MAM (Mixed
Assessor Model) is the following:

Yijk ¼ lþ ai þ mj þ bixj þ dij þ eijk

ai � N 0;r2
PAN

� �
; eijk � Nð0;r2Þ; dij � N 0;r2

D

� � ð3Þ

where xj ¼ �y�j� � �y��� are the centered product averages inserted as a
covariate, and hence bi (with

PI
i¼1bi ¼ 0) is the individual (scaling)

slope. With the xjs considered fixed this is a simple mixed linear
model, where the fixed part of the model is a regression line for
each assessor versus the consensus product pattern. As will be clear
the covariate simply has the effect to identify and remove the scal-
ing heterogeneity from the interaction term, and it should not be
seen as an analysis of covariance in the usual meaning, where one
should be careful about including covariates that depend on treat-
ment groups. In the MAM the term dij has taken the role of the
random interaction term gij in the standard mixed model in (2),
and we use the ‘‘d or D’’ to emphasize that now the term captures
interactions that are not scale differences, hence ‘‘disagreements’’.

As it will be clear in the next sections, this model will produce
valid and improved hypothesis tests for as well overall product dif-
ferences as post hoc product difference testing. And the actual
product differences are exactly those of the standard mixed model
given in (2), only the inference part (P-values) has changed. How-
ever, it will also become clear that the model cannot in general
produce valid post hoc product difference confidence intervals.
We devote the Appendix C on details on a suggestion for obtaining
better product difference confidence intervals.

We see the MAM as an approximation of the following more
properly specified mixed model accounting for scaling heterogene-
ity. If the philosophy behind using the standard ANOVA mixed
model given in (2) is accepted then the consequence would be that
also the scale panelist effects should be considered random as the
level panelist effect. Brockhoff (1994) presented one version of
such a model. Another version would the following model:

Yijk ¼ lþ ai þ mj þ bimj þ dij þ eijk

ai � Nð0;r2
PANÞ; bi � Nð0;r2

SCALEÞ; dij � Nð0;r2
DÞ;

eijk � Nð0;r2Þ ð4Þ

where the scaling differences bi are now modeled as random effects
and where the covariate is the true model product effects mj instead
of the xj. This is a non-linear mixed model, a so-called mixed multi-
plicative model, and hence not in the class of linear mixed models.
The main effects of interest: the unknown product values mj enter
both the expectation and the variance structure of this model. Mul-
tiplicative mixed models were introduced in the sensory context in
Smith, Cullis, Brockhoff, and Thompson (2003) but there only in ver-
sions where the assessor effects were fixed and the product effect
random. Whereas there could certainly be situations where the
product effects could be assumed random, e.g. if products represent
the variability of a certain food like a fruit type of fish type, we believe
that the assessor effect should be random. And there is definitely also
the need to be able to handle fixed product effects, which is more or
less consensus, when performing sensory profile data ANOVAs.

No doubt, the model given in (4) could be handled by likelihood
methods using techniques developed for non-linear mixed models.
This is not the aim of this paper however, instead we provide a simple
linear model approximation of this, and leave it for future research to
investigate what potential improvements could be obtained by the
full likelihood approach. The benefit of the approximative approach
is threefold: (1) the theory and computations simplify immensely;
(2) the insight and transparency provided by the simplified theory
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