
J. Parallel Distrib. Comput. 74 (2014) 2392–2399

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Block pivoting implementation of a symmetric Toeplitz solver✩

Pedro Alonso a,∗, Manuel F. Dolz b, Antonio M. Vidal a
a Dpto. de Sistemas Informáticos y Computación, Universitat Politècnica de València, Cno. Vera s/n, 46022 Valencia, Spain
b Department of Informatics, University of Hamburg, Bundesstraße 45a, 20146 Hamburg, Germany

h i g h l i g h t s

• We improve the solution of symmetric Toeplitz linear systems in multicore systems.
• We transform the Toeplitz matrix into a Cauchy-like one to obtain some benefits.
• The problem is partitioned into two half-sized independent problems.
• We use partial local pivoting to improve the accuracy of the solution.
• We propose a special scheme to store data in memory that accelerates the algorithm.

a r t i c l e i n f o

Article history:
Received 7 December 2011
Received in revised form
18 January 2014
Accepted 6 February 2014
Available online 15 February 2014

Keywords:
Symmetric Toeplitz matrices
Linear systems
Pivoting
Displacement structure
Multicores

a b s t r a c t

Toeplitzmatrices are characterized by a special structure that can be exploited in order to obtain fast linear
system solvers. These solvers are difficult to parallelize due to their low computational cost and their
closely coupled data operations. We propose to transform the Toeplitz system matrix into a Cauchy-like
matrix since the latter can be divided into two independent matrices of half the size of the systemmatrix
and each one of these smaller arising matrices can be factorized efficiently in multicore computers. We
use OpenMP and store data in memory by blocks in consecutive positions yielding a simple and efficient
algorithm. In addition, by exploiting the fact that diagonal pivoting does not destroy the special structure
of Cauchy-like matrices, we introduce a local diagonal pivoting technique which improves the accuracy
of the solution and the stability of the algorithm.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The linear system of equations that we work with in this paper
is defined as

Tx = b, (1)

where T ∈ Rn×n is a real symmetric Toeplitz matrix, and b, x ∈ Rn

are the independent right-hand side and the solution vectors, re-
spectively. The elements of a symmetric Toeplitz matrix are Ti,j =
t|i−j|, with tT =

t0 t1 . . . tn−1

T .
Toeplitz matrices appear in many areas of science and engi-

neering. Signal Processing is one of these fields where Toeplitz

✩ This work was partially supported by the Spanish Ministerio de Ciencia e
Innovación (Project TIN2008-06570-C04-02 and TEC2009-13741), Vicerrectorado
de Investigación de la Universidad Politécnica de Valencia through PAID-05-10 (ref.
2705), and Generalitat Valenciana through project PROMETEO/2009/2013.
∗ Corresponding author.

E-mail addresses: palonso@dsic.upv.es (P. Alonso), dolzm@icc.uji.es (M.F. Dolz),
avidal@dsic.upv.es (A.M. Vidal).

matrices can be found in topics like filtering, linear prediction, etc.
Signal processing interpretations of Toeplitzmatrices can be found,
e.g., in [28,22,30]. In particular, Toeplitz matrices appear in the
solution of inverse filtering problems and equalization of multi-
channel acoustic systems where matrices can be very large, ac-
cording to the filter length [16,17]. In some cases, the number of
filters are also large, proportional to the number of sources (loud-
speakers) like it is the case in [26,8], where 96 loudspeakers are
used to position a sound signal in a 3D space of a room. The least
squares problems which arise in that problems conduce to the so-
lution of linear systems with Toeplitz matrices, sometimes non-
symmetric or symmetric indefinite. Efficient solvers, other than the
traditional Levinson-type ones [18], represent a good alternative
for these cases.

Many (fast) algorithms that exploit the special structure of
Toeplitz matrices have been developed over recent years [23].
These algorithms reduce the O(n3) flops required to solve a dense
linear system by at least one order of magnitude lower if any
type of structure is taken into account. In general, fast algorithms
can be classified into Levinson-type algorithms (which perform an

http://dx.doi.org/10.1016/j.jpdc.2014.02.003
0743-7315/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2014.02.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.02.003&domain=pdf
mailto:palonso@dsic.upv.es
mailto:dolzm@icc.uji.es
mailto:avidal@dsic.upv.es
http://dx.doi.org/10.1016/j.jpdc.2014.02.003

P. Alonso et al. / J. Parallel Distrib. Comput. 74 (2014) 2392–2399 2393

implicit computation of the inverse of the system matrix), and
Schur-type algorithms (which perform a factorization of the sys-
tem matrix) [15]. Levinson-type algorithms have a memory com-
plexity of O(n) data, but they are very rich in dot products with
closely coupled operations. Therefore, a good speed-up in a par-
allel implementation is difficult to achieve. Schur-type algorithms
usually need O(n2) data in memory and are easier to parallelize;
however, they also have closely coupled operations [1].

Fast (O(n2)) and superfast (O(n log2 n)) algorithms can be un-
stable or might return inaccurate solutions for indefinite Toeplitz
matrices [10]. The work in [14] proposed moving the symmetric
Toeplitz matrix to a symmetric Cauchy-likematrix to solve the lin-
ear system. This translation allows pivoting techniques to be in-
corporated in the algorithms since pivoting does not destroy the
structure of Cauchy-like matrices, which is contrary to what hap-
pens with Toeplitz matrices.

The idea of using Cauchy-likematrices has also been used to de-
velop parallel algorithms. The Cauchy-like matrix obtained in this
way has great sparsity that can be exploited to reduce the linear
system to two smaller independent linear systems of half the size
of the original one, reducing both time and memory to solve the
problem. For example, this was used in [33] to propose a shared
memory algorithm. It was also used in [9] leading to a multilevel
parallel MPI-OpenMP algorithm. In that paper, the Toeplitz matrix
was transformed into a Cauchy-like matrix and split into two in-
dependent matrices, each one assigned to an MPI process which
could be mapped onto different nodes in a network, or onto the
same node thus fixing the problem of the lack of compilers that
support OpenMPnested parallelism. Then, each one of thesematri-
ces arising from the former partition were factorized concurrently
to obtain their LDLT decomposition, but the scalability of this last
factorization step was poor for many cores due to the low mem-
ory–CPU throughput of the algorithm. Different out of order strate-
gies consisting of producer–consumer task queues implemented
with pthreadswere studied in [4] to improve the speed-up of the
algorithm. However, it was shown that the sequential order in the
computation of the blocks in which the triangular matrix is parti-
tioned is as fast as othermore complicated out of order approaches.

In this paper, we use a similar approach based on the trans-
formation of linear system (1) into a Cauchy-like linear system.
The algorithm applied to factorize Cauchy-like matrices makes
use of very regular memory access patterns allowing independent
blocks of the resulting triangular factor to be computed concur-
rently. Block versions of O(n3) algorithms have traditionally been
developed to exploit the hierarchical memory levels. In the case of
multicore computers, one step beyond this has been proposed to
improve results. This step consists of storing all the data belong-
ing to the same block in consecutive memory locations. It was
initially proposed and investigated in [19–21] where the layout is
referred to as Square Block Format. This technique has been success-
fully applied to level 3 algorithms of BLAS in [11]where the storage
format is called Block Data Layout (BDL). Based on a hierarchical or-
ganization of the data by blocks, new ideas have been proposed as
alternatives to the current implementation of LAPACK in different
ways [12,34]. A recent contribution has been proposed, in partic-
ular, for a similar problem: the LDLT decomposition of symmetric
indefinite dense matrices [6]. In order to improve the efficiency of
the parallel triangularization of each one of the two submatrices,
we propose using the BDL storage format. The derived algorithm is
also easy to implement since it is based on simple OpenMP direc-
tives instead of complicated task queues of pthreads.

In order to improve accuracy of the solution of symmetric lin-
ear systems by matrix decomposition diagonal pivoting (Bunch–
Kaufman) is used. In parallel execution pivoting can reduce
performance due to the data interchanging. Some variants of di-
agonal pivoting have been proposed for the factorization of sym-
metric indefinite matrices that improve performance, thanks to a

reduction in the number of matrix column interchanges. This
proposition can be found, e.g., in [31], where it is proposed and
studied an algorithm variant supported on lookahead-type tech-
niques. Also, for Toeplitz matrices, lookahead techniques have
widely studied with the aim at improving accuracy, further to en-
sure stability of Levinson- and Schur-type algorithms which can
even break down for well-conditionedmatrices [13,7]. But, in gen-
eral, look-ahead algorithms for Toeplitz matrices are based on
heuristics with variable results (depend on the given matrix) and
they are difficult to apply in concurrent environments where we
try to keep the sough-after performance of the multicore system.
Thus, our option consists of using local diagonal pivoting in the
algorithm. Although diagonal and local pivoting has limitations
compared with full or partial pivoting, we show through some ex-
amples that the precision of the solution might be improved. Since
symmetric Cauchy-likematrices are not destroyed by diagonal piv-
oting and pivoting is bound to diagonal blocks (local pivoting), the
execution time is barely affected.

The next section presents an abridged mathematical descrip-
tion of the problem and shows the overall algorithm. Details about
the implementation of the proposed algorithm can be found in
Section 3. The block pivoting technique incorporated to the algo-
rithm is described in Section 4. Experimental results are shown in
Section 5. Some conclusions are presented in Section 6.

2. Mathematical background

The solution of system (1) can be carried out by solving the lin-
ear system

C x̃ = b̃, (2)

where C ∈ Rn×n is known as a Cauchy-like matrix, and b̃, x̃ ∈ Rn.
Matrix C = [aij] is called Cauchy-like (also generalized Cauchy) if for
certain n-tuples of complex numbers c = (ci)n−10 and d = (di)n−10
the matrix
∇(c, d)C =

(ci − dj)aij

n−1
0 ,

has a rank r which is ‘‘small’’ compared with the order of C . In this
paper we deal with real symmetric Cauchy-like matrices, i.e., the
n-tuples are real and c = d [23]. The normalized Discrete Sine
Transformation (DST), represented bymeans of the symmetric and
orthogonal matrix S as defined in [25], allows system (1) to be
transformed into system (2) by performing C = STS, x̃ = Sx,
b̃ = Sb. Matrices T and C both belong to the class of structured ma-
trices [24]. Structuredmatrices are characterized by having a ‘‘low’’
displacement rank r (r ≪ n), which briefly means that information
contained in the full matrix is implicitly contained in only n-size r
vectors. This property can be exploited to derive O(n2) algorithms
for their triangular factorization. In the case of Cauchy-like matrix
C (2), the displacement rank r is 4.

Working in the Cauchy-like domain has an additional advantage
since entries cij such that i + j is odd are 0. Let P ∈ Rn×n be the
odd–even permutation that positions the odd entries of an array
to the top and the even entries to the bottom, then the linear
system (2) can be divided into the two independent linear systems
Cix̂i = b̂i, for i = 1, 2, with C1 ∈ Rn1×n1 and C2 ∈ Rn2×n2 , since

PCPT
=

C1

C2

, Px̃ =

x̂1
x̂2

and Pb̃ =

b̂1
b̂2

, (3)

where n1 = ⌈n/2⌉ and n2 = ⌊n/2⌋.
Matrices C1 and C2 are also Cauchy-like (though they do not have

zero entries as C) and have a displacement rank of 2, i.e.,
Λ1

Λ2

C1

C2

−

C1

C2

Λ1

Λ2

=

G1
G2

J

GT
1 GT

2

T (4)

Download English Version:

https://daneshyari.com/en/article/431715

Download Persian Version:

https://daneshyari.com/article/431715

Daneshyari.com

https://daneshyari.com/en/article/431715
https://daneshyari.com/article/431715
https://daneshyari.com

