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h i g h l i g h t s

• We study the flooding time in dynamic random graphs with arbitrary degree sequence.
• In the case of power-law degree sequences, the flooding time is almost surely log(n).
• In the general case, upper bounds depend on specific properties of the sequence.
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a b s t r a c t

This paper addresses the flooding problem in dynamic graphs, where flooding is the basic mechanism
in which every node becoming aware of a piece of information at step t forwards this information to
all its neighbors at all forthcoming steps t ′ > t . We show that a technique developed in a previous
paper, for analyzing flooding in a Markovian sequence of Erdös–Rényi graphs, is robust enough to be
used also in different contexts. We establish this fact by analyzing flooding in a sequence of graphs drawn
independently at randomaccording to amodel of randomgraphswith given expected degree sequence. In
the prominent case of power-lawdegree distributions,we prove that flooding takes almost surelyO(log n)
steps even if, almost surely, none of the graphs in the sequence is connected. In the general case of graphs
with an arbitrary degree sequence, we prove several upper bounds on the flooding time, which depend
on specific properties of the degree sequence.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

One of the basic communication tasks that has been extensively
studied in the context of communication networks is the broad-
cast operation: one distinguished node of the network (the source
node) aims at sending a message to all the other nodes of the net-
work. The simplest communication process that implements such
an operation is the flooding mechanism, according to which (1) the
source node is initially informed, and (2) when a node v, which
is not informed yet, has an informed neighbor, then v becomes
informed itself at the next time step. The question is how long
does it take to get all the nodes informed, i.e. what is the speed
of information spreading? Clearly, this question has an easy an-
swer in the case of static networks: the flooding worst-case com-
pletion time is just equal to the diameter of the network. In a dy-
namic network, however, nodes and edges can appear and disap-
pear over time (several emerging networking technologies such as
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ad hoc wireless, sensor, mobile networks, and peer-to-peer net-
works are inherently dynamic). In dynamic networks, it is actually
not even clear whether the flooding completion time is finite. In
order to investigate such an issue, the concept of evolving graph
has been introduced in the literature. An evolving graph is a se-
quence of graphs (Gt)t≥0 with the same set of nodes but poten-
tially different set of edges. As far as we know, this definition has
been formally introduced for the first time by Ferreira [13]. This
concept is clearly general enough to enable modeling essentially
any kind of dynamicity, ranging from adversarial evolving graphs
(see, for example, [10]) to random evolving graphs (see, for exam-
ple, [4,14]). In this latter case, the edge-Markovian model has been
recently studied with respect to the flooding completion time. In
particular, Clementi et al. [11] show some tight upper bounds on
the flooding completion time in the case of edge-Markovian evolv-
ing graphs, while Baumann et al. [2] extended and adapted these
results to the case in which every node forwards the message only
for a limited number of time steps after message reception. In or-
der to prove these latter results, the authors make use of the so-
called reduction lemma, which intuitively shows that the flooding
completion time of an edge-Markovian evolving graph is equally
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distributed as the diameter of a suitably defined weighted random
graph. As a consequence of this lemma, the analysis of the flood-
ing time reduces to the analysis of the connectivity properties of
such a randomweighted graph. In this research note,we showhow
the reduction lemma can be applied to the analysis of the flooding
completion time in the case of another interesting kind of random
evolving graphs in which, at each time step t ≥ 0, the graph Gt
is chosen uniformly at random in a family of graphs with an ar-
bitrary degree sequence. Indeed, even if the Erdös–Rényi random
graphs [12] share many similar aspects with large scale real-world
graphs, it has been repeatedly observed that there are several sig-
nificant differences between these two families of graphs. One of
the most well-known differences concerns the fact that, in ‘‘real’’
networks, there are few edges, and there can be vertices with very
large degrees (those networks are often called power-law graphs).
Instead, all nodes in the Erdös–Rényi randomgraphs basically have
the same degree. Hence, a general random graph model has been
introduced in the literature for producing random graphs with ar-
bitrary given sequence of expected degrees (for a definitive refer-
ence to this model, see [7]). We adopt this model in this paper.
Our results: by applying the technique of Baumann et al. [2], we
first show that the flooding completion time of a random evolv-
ing graph (Gt)t≥0 is bounded by kD + 2C , where, intuitively:
(1) k is the smallest time necessary for the appearance of a giant
component in each random graph; (2) D is the diameter of the
giant component; and (3) C is the time required for the nodes out-
side the giant component to eventually get an edge connecting
them to the giant component. Based on this result, we develop a
general methodology for analyzing flooding in sequences of ran-
dom graphs. We apply this methodology to the case of power-
law evolving graphs (that is, sequences of mutually independent
random graphs such that the number y of nodes of degree x dis-
tributes like 1/xβ for some β > 0), and to the case of an arbitrary
given degree sequence w. In the former case we prove that the
flooding completion time is almost surely (a.s.) logarithmic in the
number of nodes, while in the latter case we show several bounds,
which depend on some specific properties of the degree sequence.
We believe that these results provide an interesting first step to-
wards the complete analysis of the flooding completion time in the
case of more realistic evolving graph models (a preliminary short
version of the results included in this paper has been presented
in [3]).

2. The model

Given a random graph model G, we are considering sequences
S = (Gt)t≥0 of mutually independent random graphs in G on
the same set [n] = {1, . . . , n} of nodes. We are then interested
in the time it takes for a rumor initiated at an arbitrary node
i ∈ [n] to reach all nodes. The rumor propagates to the nodes
according to the aforementioned flooding mechanism. Apart from
ill-defined random graphmodels inwhich a node, or a set of nodes,
remains perpetually disconnected from the others, the rumor
will eventually reach all nodes. We define the random variable
fG(S, i) as the number of steps it takes for the flooding protocol to
propagate a rumor initiated at node i in a sequence S of random
graphs picked from G. (When it is clear from the context, the
subscript G will be omitted). We are actually focusing on f (S) =

maxi∈[n] f (S, i), that is the maximum flooding time, taken over all
possible sources. We now describe the families of dynamic graphs
we are interested in.
Arbitrary degree sequence: given a list w = (w1, . . . , wn) of n pos-
itive reals with max1≤i≤n w2

i <
n

i=1 wi, this paper is dealing
with the random graph model Gw as defined by Chung and Lu [5].
The probability of existence of an edge ei,j between nodes i and j

(not necessarily distinct) is set to pi,j =
wiwjn
k=1 wk

. Hence, the ex-
pected degree di of node i in Gw is precisely the ‘‘weight’’ wi of
node i. Moreover, the expected average degree of a graph G inGw is

d =
1
n

n
i=1 wi and its second order average degree is d̃ =

n
i=1 w2

in
i=1 wi

.
The analysis of flooding finds its main interest when each of the
graphsGt is unlikely to be connected. In such a framework, theway
the information floods is indeed entirely governed by the dynamics
of the graphs in the sequence, where new edges produce opportu-
nities for the information to propagate, while disappearing edges
cause delays in the message propagation through the (dynamic)
network.

Two important parameterswill impact the efficiency of flooding
in dynamic networks. One is the size (i.e., number of nodes) of
the largest connected component, and the other is the volume
(i.e., twice the number of edges) of the ‘‘fattest’’ connected
component. More specifically, following the notation of Chung and
Lu [5], the size of a node set S is denoted by |S|, and its volume is
denoted by vol(S) =


i∈S wi. Hence, the volume of S is the sum of

the expected degrees of the nodes in S, and the expected value of
vol(G) = vol(V (G)) (where V (G) denotes the set of nodes of G) is
equal to nd. In what follows, we assume, w.l.o.g., that w1 ≤ w2 ≤

· · · ≤ wn.
Power-law networks: an important case of degree sequence is
the power-law degree distribution, that is graphs for which the
number y of nodes of degree x distributes like 1/xβ for someβ > 0.
There are actually several models aiming at describing tractable
families of random power-law graphs (see, for example, [1,6,15]).
In this paper, we consider the power-law random graph model
Gα,β introduced and analyzed by Lu [15]. Roughly, this model has
two parameters,α andβ , the samewayGn,p (inwhich a graphwith
n nodes is constructed by including in it each edgewith probability
p, independently from every other edge) has two parameters.
When the degree distribution is plotted in log–log scale, α is the y-
intercept, while −β is the slope. More specifically, a graph in Gα,β

has a degree distribution such that the expected number of nodes
with degree k is equal to


eα

kβ


. In this model, themaximumdegree

is ∆ =

eα/β


, and the number of nodes is n =

∆

k=1


eα

kβ


. We

have

n ≃

ζ (β) eα if β > 1,
α eα if β = 1,
c eα/β if 0 < β < 1,

where ζ (x) =


∞

k=1
1
kx is the zeta function, and β/(1 − β) ≤ c ≤

1/(1− β). To pick at random a graph in Gα,β , one fixes a sequence
w = (w1, . . . , wn) satisfying that for any k ∈ [∆], |{i : k ≤ wi ≤

k + 1}| =


eα

kβ


, and then uses pi,j =

wiwjn
k=1 wk

to pick the edges
(see [15] for the details of this construction).

3. A general methodology

We first briefly recall the technique introduced by Baumann
et al. [2], which allows us to reduce the analysis of flooding to com-
puting diameters (the two parameters coincide in the static case,
but are a priori quite different in the dynamic setting). Given a ran-
dom graph model G for n vertices, let pi,j denote the probability
that there exists an edge ei,j between node i and node j in any of the
graphs in the sequence. Assume that all edges are mutually inde-
pendent. We define a weighted graphH as follows.H is the n-node
clique whose edges have weights defined as follows. The weight
weight(ei,j) ≥ 1 of edge ei,j between node i and node j is drawn at
random according to the geometric distribution of parameter pi,j.
That is, Pr


weight(ei,j) = k


= pi,j(1− pi,j)k−1. For k ∈ N+

∪ {∞},
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