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h i g h l i g h t s

• We propose a multi-objective scheduling framework for scientific workflows.
• We instantiate the framework for makespan, cost, energy, and reliability.
• We design a novel multi-objective list scheduling heuristic for workflows.
• We approximate the optimal solutions based on Pareto domination of user preferences.
• The solutions have better coverage compared to two related approaches.
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a b s t r a c t

Executing large-scale applications in distributed computing infrastructures (DCI), for example modern
Cloud environments, involves optimization of several conflicting objectives such as makespan, reliability,
energy, or economic cost. Despite this trend, scheduling in heterogeneous DCIs has been traditionally
approached as a single or bi-criteria optimization problem. In this paper, we propose a generic multi-
objective optimization framework supported by a list scheduling heuristic for scientific workflows in
heterogeneous DCIs. The algorithm approximates the optimal solution by considering user-specified
constraints on objectives in a dual strategy:maximizing the distance to the user’s constraints for dominant
solutions and minimizing it otherwise. We instantiate the framework and algorithm for a four-objective
case study comprising makespan, economic cost, energy consumption, and reliability as optimization
goals. We implemented our method as part of the ASKALON environment (Fahringer et al., 2007) for Grid
and Cloud computing and demonstrate through extensive real and synthetic simulation experiments that
our algorithm outperforms related bi-criteria heuristics while meeting the user constraints most of the
time.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Scientific workflows emerged in the last decade as an attrac-
tive paradigm for programming large-scale applications in hetero-
geneous distributed computing infrastructures (DCI) such as Grids
and Clouds. In this context, scheduling heterogeneous tasks in-
cluding workflows is one of the traditional challenges in paral-
lel and distributed computing. If we focus on the execution time
also referred as makespan, the problem has been shown to be
NP-complete, hence no polynomial algorithm for solving it exists
(assuming P ≠ NP). While this has been for decades the only op-
timization parameter of interest, modern DCIs are bringing along
nowadays other parameters of equal importance such as reliability
and economic cost (in Clouds), while recently energy consumption
raises ever greater concerns too. Real-world scenarios are therefore
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confronted with a multi-objective optimization problem where
many of these objectives are conflicting. For example, fast proces-
sors are typically rented by Cloud providers at higher prices, con-
sume more energy, and may become unreliable due to the large
user contention. In these scenarios, there is no single solution that
optimizes all objectives, but a set of tradeoff solutions known as
the Pareto frontier.

Until today, traditional scheduling researches [19] targeted
makespan as the only optimization goal, while several isolated
efforts addressed the problem by considering at most two objec-
tives [17,21]. Although scheduling problems involve today multi-
objective optimizations [14], a generic scheduling algorithm and
framework for optimizing multiple conflicting objectives is still
missing. Due to the NP-hard complexity of the makespan schedul-
ing problem, practical approaches need to resort on heuristics
to approximate the optimal solutions also in the multi-objective
case. In this paper, we present a polynomial multi-objective algo-
rithm for scientific workflow applications in heterogeneous DCIs
that brings a two-fold novelty. First, we propose a general frame-
work based on the multi-objective optimization theory for static
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scheduling of scientific workflows in DCIs. We analyze and clas-
sify different objectives with respect to their impact on the
optimization process and present a four-objective case study com-
prising makespan, economic cost, energy consumption, and relia-
bility. Second, we support our framework through a list scheduling
heuristic algorithm capable of dealing with more than two ob-
jectives (as restricted by related works). The algorithm uses con-
straints specified by the user for each objective and approximates
the optimal solution by applying a dual strategy: maximizing the
distance to the constraint vector for dominant solutions and mini-
mizing it otherwise.

The paper is organized as the follows. In Section 2we review the
related work, followed by a short background in multi-objective
optimization theory in Section 3. In Section 4, we formalize the
abstract application, objective, and platform models underneath
our approach. In Section 5, we instantiate this model by a
case study comprising makespan, cost, reliability and energy as
objectives. Section 6 presents a newmulti-objective list scheduling
heuristic for workflow applications, illustrated through a small
example in Section 7. We extensively evaluate our method in
Section 8 for real-world and synthetic workflows and conclude in
Section 9.

2. Related work

Most related works are bi-objective approaches which we or-
ganized in three categories: unconstrained, single-constraint, and
Pareto-based.

2.1. Unconstrained approaches

The two workflow scheduling heuristics (list and genetic-
based) proposed in [7] tradeoff execution time for reliability. The
algorithms consider no constraint and noweight for the objectives,
and only concentrate on fairly optimizing the objectives. Schedul-
ing of pipeline workflows on homogeneous platformswith respect
to latency and throughput has been studied in [3]. The algorithm
does not consider general workflows and assumes one constrained
objective in each execution. In [1], a list workflow scheduling
heuristic that considers makespan as the first objective and relia-
bility as the second one has been proposed. The key idea is to repli-
cate the activities on proper resources to gain both reliability and
makespan optimization. This lexicographic method considers no
constraint for the objectives and also assumes that the objectives
are arranged in the order of their importance. The generic multi-
objective approach in [8] targets task scheduling of different users
in two situations: constant and time-invariant penalty functions.
Each user tries to increase an own utility, while the scheduler is re-
sponsible for increasing the overall utility of the users by assigning
them priorities. The algorithm is restricted to independent tasks.

2.2. Single-constraint approaches

Two algorithms called LOSS and GAIN [17] schedule a directed
acyclic graph (DAG) under a budget constraint based on a two-
phase optimization process: the first phase optimizes one crite-
rion, while in the second phase applies a budget constraint. In [22],
the authors solve a bi-criteria workflow scheduling problem by
minimizing the execution cost while meeting a deadline. In the
first step, they divide theworkflow deadline into sub-deadlines for
all activities. In the second step, they model the sequential activ-
ities as a Markov decision process solved using a value iteration
method. Both papers consider only one constrained objective and
try to optimize the other with respect to the defined constraint.
Furthermore, they use a rescheduling phase that introduces sig-
nificant overhead that makes the scheduling process non-scalable.

The work in [21] proposes a bi-criteria genetic optimization al-
gorithm that defines the fitness function as a combination of the
partial fitness functions of the objectives. The algorithm is budget-
constrained and considers no execution deadline. The algorithm
in [2] targets DAG execution time minimization while keeping the
number of failures equal to a constant x by replicating x+ 1 copies
of each activity to different processors. The authors also suggest an
extended algorithm which tries to improve the system reliability
using redundancy.

2.3. Pareto-based approaches

The algorithm in [23] considers multi-objectives evolutionary
algorithms for general workflow scheduling. The output is an ap-
proximation of the Pareto set and selecting the proper solution
from this set remains a problem. The work in [11] is a similar ap-
proach for Grid workflow scheduling based on a multi-objective
differential evolutionary algorithm that approximates the Pareto
set by considering time and cost as objectives. In general, themajor
weakness of the evolutionary algorithms for scheduling problems
is their slow convergence to good solutions, as we demonstrate
in our experiments (Section 8). In contrast to Pareto-based ap-
proaches, our proposed algorithm can be categorized as an a-priori
multi-objective scheduling method [14] looking for a single solu-
tion that satisfies the user’s preferences and constraints. Our case
study considers four objectives and uses Pareto relationships to
find a solution that dominates or approaches the user constraints.

3. Multi-objective optimization background

We introduce several important concepts of themulti-objective
optimization theory used in our method involving two steps:
finding a set of optimal solutions and selecting the fittest solutions
according to user preferences. We must distinguish two spaces as
part of multi-objective optimization problems:
1. solution (or design) space X comprising all feasible solutions, for

example the complete set of possible schedules of an applica-
tion;

2. objective (or criterion) space O comprising an image of every
element of X mapped to objective values.

In other words, each x ∈ X maps to an image o ∈ O which repre-
sents the objective values of x, as depicted in Fig. 1. A point o ∈ O
dominates o′ ∈ O, denoted as o ≻ o′, if o is not worse than o′ with
respect to all objectives and o is better for at least one of them.
A point o′ ∈ O is said to be non-dominated if there is no o ∈ O
that dominates o′. A solution x ∈ X is Pareto optimal (efficient)
if its image in the objective space is non-dominated. The set of all
Pareto-optimal solutions is called a Pareto-optimal set. The image
set of all members of a Pareto-optimal set in the objective space is
called a Pareto frontier. A vector comprising the best possible values
for all objectives is called a Utopia point representing the ideal so-
lution. Such a vector typically dominates the whole Pareto frontier
and is therefore impossible to realistically achieve. A vector com-
prising theworst possible values for all existing objectives is called
a Nadir point. The entire Pareto frontier dominates this point.

Let us assume that Fig. 1(b) depicts the objective space of the
solution space of Fig. 1(a). The three solutions x, x′ and x′′ map to
points o, o′ and o′′ in the objective space. If the optimization in this
sample is minimizing both objectives O1 and O2, then the point o
in the objective space is dominated by the point o′′, while o′′ has
better values for both objectives O1 and O2. Two points o′ and o′′
are non-dominated points and consequently, the set {o′, o′′} is the
Pareto frontier. Therefore, the corresponding solutions x′ and x′′
are Pareto optimal and the set


x′, x′′


is the Pareto set. The Utopia

point is determined by selecting the best values of the objectives,
as shown in Fig. 1(b). In contrast, the Nadir point is determined by
selecting the worst values of the objectives. Typically, we need a
single final solution selected by analysis of the preferences.
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