
J. Parallel Distrib. Comput. 74 (2014) 2180–2192

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Competitive online adaptive scheduling for sets of parallel jobs with
fairness and efficiency✩

Hongyang Sun a,∗, Wen-Jing Hsu a, Yangjie Cao b

a School of Computer Engineering, Nanyang Technological University, Singapore
b School of Software Engineering, Zhengzhou University, China

h i g h l i g h t s

• We study online adaptive scheduling for sets of parallel jobs on multiprocessors.
• We propose an improved algorithm with both fairness and efficiency.
• The proposed algorithm is asymptotically competitive for set response time.
• We provide a framework for analyzing a family of algorithms with provable efficiency.
• We consider hierarchical scheduling and present a fair and efficient solution.

a r t i c l e i n f o

Article history:
Received 21 February 2013
Received in revised form
6 November 2013
Accepted 5 December 2013
Available online 14 December 2013

Keywords:
Adaptive scheduling
Parallel jobs
Set response time
Multiprocessors
Online algorithm
Competitive analysis
Hierarchical scheduling
Fairness
Efficiency

a b s t r a c t

We study online adaptive scheduling for multiple sets of parallel jobs, where each set may contain one
or more jobs with time-varying parallelism. This two-level scheduling scenario arises naturally when
multiple parallel applications are submitted by different users or user groups in large parallel systems,
where both user-level fairness and system-wide efficiency are of important concerns. To achieve fairness,
we use the well-known equi-partitioning algorithm to distribute the available processors among the
active job sets at any time. For efficiency, we apply a feedback-driven adaptive scheduler that periodically
adjusts the processor allocations within each set by consciously exploiting the jobs’ execution history.
We show that our algorithm achieves asymptotically competitive performance with respect to the
set response time, which incorporates two widely used performance metrics, namely, total response
time and makespan, as special cases. Both theoretical analysis and simulation results demonstrate that
our algorithm improves upon an existing scheduler that provides only fairness but lacks efficiency.
Furthermore, we provide a generalized framework for analyzing a family of scheduling algorithms
based on feedback-driven policies with provable efficiency. Finally, we consider an extended multi-
level hierarchical scheduling model and present a fair and efficient solution that effectively reduces the
problem to the two-level model.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

Scheduling parallel jobs on multiprocessor systems has been
a fundamental area of research in computer science for decades
[10,14,18]. As parallel systems are increasingly deployed to provide
high-performance computing services, such as in cloud computing
and the large-scale data centers, efficient scheduling on these

✩ A preliminary version of this paper has appeared in the Proceedings of the 17th
IEEE International Conference on Parallel and Distributed Systems, December 2011.
∗ Corresponding author.

E-mail addresses: sunh0007@ntu.edu.sg (H. Sun), hsu@ntu.edu.sg (W.-J. Hsu),
caoyj@zzu.edu.cn (Y. Cao).

platforms will play a more important role in boosting application
performance and increasing system utilization.

Most parallel systems today are shared by multiple users, and a
common scenario ariseswhen eachuser submits several jobs to the
system. A natural objective in this case is to achieve efficient exe-
cution of the jobs while at the same time offering a level of fairness
among different users. In this paper, we consider such a scenario,
in which a collection of parallel job sets needs to be scheduled on
a multiprocessor system and each job set corresponds to the set of
applications submitted by a particular user or user group. We are
interested in the response time of a job set, which is the duration
between when the job set is submitted and when all jobs in the
job set are completed. The objective is to minimize the sum of the
response times of all job sets, or the set response time. As pointed
out by Robert and Schabanel [19], the metric of set response time
benchmarks both fairness and efficiency of a scheduling algorithm.

0743-7315/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpdc.2013.12.003

http://dx.doi.org/10.1016/j.jpdc.2013.12.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2013.12.003&domain=pdf
mailto:sunh0007@ntu.edu.sg
mailto:hsu@ntu.edu.sg
mailto:caoyj@zzu.edu.cn
http://dx.doi.org/10.1016/j.jpdc.2013.12.003

H. Sun et al. / J. Parallel Distrib. Comput. 74 (2014) 2180–2192 2181

In fact, it represents a more general performance measure that in-
corporates two widely used metrics, namely, total response time
andmakespan, as special cases. Suppose that each job set in the col-
lection contains only a single job, the set response time becomes
the total response time of all jobs in the collection. At the other
extreme, if the collection contains only a single job set, the set re-
sponse time is simply the makespan of all jobs. To schedule a col-
lection of job sets, an algorithm needs to allocate processors at two
separate levels, namely, the job-set level and the job level. In partic-
ular, it needs to first specify the number of processors allocated to
each job set, and then decides the processor allocation for the jobs
within each job set. Such a two-level scheduling model is consid-
erably more challenging compared to the traditional single-level
scheduling [8,7,1,11,25], where an algorithm only needs to decide
the processor allocation for a flat collection of jobs.

We consider parallel jobs with time-varying parallelism profile,
which is commonly observed inmany applications that go through
different phases in their executions. Each phase of a job is specified
by an amount ofwork to be done and a speedup function,whichwe
assume in this paper is linear up to a phase-dependent maximum.
(See Section 2.1 for the detailed job model.) Moreover, the parallel
jobs are assumed to be malleable [10] in nature, that is, they
can adjust to the changing processor allocations at runtime. Such
malleability is enabled by the more flexible runtime systems
[30,21,6,23] that have emerged in the last decade as well as
the state-of-the-art virtual machine (VM) technology [2,16,22]
that makes adaptive scheduling possible with little or negligible
overhead. In contrast to static scheduling [14], which allocates a
fixed set of processors to a job throughout its execution, adaptive
scheduling can benefit from the time-varying characteristic of the
jobs’ resource requirements and hence appears to be a more
promising approach to scheduling jobs inmodern parallel systems.
We adopt the online non-clairvoyant scheduling model [17,11],
which requires an algorithm to make all scheduling decisions
in an online manner without any knowledge of the jobs’ future
characteristics, such as their release time, remaining work and
parallelism profile. This is a natural assumption since such
information is generally not available to the operating system
schedulers. We measure the performance of an online adaptive
scheduler using the standard competitive analysis [3], which
compares its set response time with that of an optimal offline
scheduler.

1.2. Related work

A well-known online adaptive scheduler is Equi-partitioning
(Equi) [29], which at any time divides the total number of pro-
cessors evenly among all active jobs in the system. This algorithm,
although simple, is able to ensure fairness by automatically adjust-
ing the processor allocations whenever a new job is admitted into
the systemor an existing job is completed and leaves the system. In
fact, such a simple notion of fairness is sufficient to guarantee satis-
fying performance when each user submits only one job. In partic-
ular, Edmonds et al. [8] showed that Equi is (2+

√
3)-competitive

with respect to the total response time of all jobs if they are re-
leased at the same time. Using resource augmentation analysis [13],
Edmonds [7] also showed that Equi is (2 + 4/ϵ)-competitive for
arbitrary released jobs with processors whose speed is 2+ ϵ times
faster than the optimal, for any ϵ > 0.1 However, despite its good

1 Edmonds and Pruhs [9] recently proposed a variant of the Equi scheduler, called
Latest Arrival Processor Sharing (Laps), which at any time shares the total number
of processors evenly among the β fraction of the active jobs with the latest release
time, for any 0 < β ≤ 1. They showed that by varying the parameter β , Laps
provides a tradeoff between the augmented processor speed s = 1+β+ ϵ and the
competitive ratio 4s/(βϵ), for any ϵ > 0.

performance for the total response time, Equi fares poorly in terms
of the makespan, which to a certain extent reflects the system effi-
ciency when there is only one user in the system. Since Equi does
not consider how efficiently each job is able to utilize the allocated
processors, it may under-utilize the resources especially when
different jobs can have very different processor requirements.
Specifically, Robert and Schabanel [19] showed that Equi is
Θ(ln n

ln ln n)-competitive with respect to themakespan even if all jobs
are batch released, where n is the total number of jobs submitted
to the system.

It turns out that both user-level fairness and system-wide
efficiency are critical when minimizing the set response time for
a collection of job sets. In [19], Robert and Schabanel applied Equi
to both levels by equally dividing the total number of processors
among the active job sets and within each job set equally dividing
the allocated processors among its active jobs. They showed that
the resulting algorithm Equi◦Equi has a competitive ratio of (2 +
√
3+o(1)) ln n

ln ln n with respect to the set response time when all job
sets are batch released, where n is the maximum number of jobs
in any job set. The result suggests that the set response time ratio
of a scheduling algorithm actually encompasses the total response
time ratio and themakespan ratio of the corresponding algorithms
at the job-set level and the job level, respectively. Hence, it is
important to retain both fairness and efficiency in order to achieve
satisfying performance for this general scheduling metric.

To improve the system efficiency, feedback-driven adaptive
schedulers [1,11,25] were recently proposed. Unlike Equi, which
obliviously allocates processors to the jobs regardless of their
actual resource requirements, feedback-driven algorithms period-
ically adjust processors among the jobs by consciously exploit-
ing the jobs’ execution history. In particular, Agrawal et al. [1]
introduced the A-Greedy scheduler that periodically collects the
resource utilization of each job, and based on this information
estimates the job’s future processor requirement. It has been
shown that A-Greedy wastes at most a constant fraction of a job’s
allocated processors, and thus achieves efficient processor utiliza-
tion [1]. Furthermore, by combining A-Greedywith a conservative
resource allocator, such as Dynamic Equi-partitioning (Deq) [15],
He et al. [11] showed that the feedback-driven algorithm Agdeq
is asymptotically O(1)-competitive with respect to the makespan
regardless of the number of jobs in the system. Recently, Sun
et al. [25] proposed another feedback-driven adaptive scheduler
Acdeq, which uses a control-theoretic approach to estimate the
jobs’ processor requirements and it has been shown to have bet-
ter feedback stability and system efficiency.

1.3. Our contributions

Aiming at both user-level fairness and system-wide efficiency,
we bring together the benefit of the Equi algorithm [29] and that of
the feedback-driven scheduler Agdeq [11], and propose a both fair
and efficient online adaptive algorithm Equi◦Agdeq for scheduling
any collection of job sets. We show that the set response time
ratio of our algorithm indeed combines the total response time
and the makespan ratios of the respective algorithms in a non-
trivial manner. Our first contribution is to bound the asymptotic
competitive ratio (see Section 2.2 for the detailed definition) of
Equi◦Agdeq, which is summarized in the following.
• Equi◦Agdeq is O(1)-competitive in the asymptotic sense

with respect to the set response time when all job sets
are batch released. The exact ratio depends on the constant
parameters of the Agdeq algorithm, and it is formally stated in
Theorem 1 (Section 4.2). This result improves the competitive
ratio of Θ(ln n

ln ln n) achieved by the Equi◦Equi algorithm [19]
for sufficiently large jobs, where n is the maximum number
of jobs in any job set. The improvement is a direct result
that Equi◦Agdeq exhibits both fairness and efficiency while
Equi◦Equi provides only fairness but lacks efficiency.

Download English Version:

https://daneshyari.com/en/article/431750

Download Persian Version:

https://daneshyari.com/article/431750

Daneshyari.com

https://daneshyari.com/en/article/431750
https://daneshyari.com/article/431750
https://daneshyari.com

