
J. Parallel Distrib. Comput. 74 (2014) 2193–2202

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Distributed algorithm for the maximal 2-packing in geometric
outerplanar graphs
Joel Antonio Trejo-Sánchez a,b,∗, José Alberto Fernández-Zepeda a

a Department of Computer Science, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada 22860, B.C., Mexico
b Department of Basic Sciences, Universidad del Caribe, Cancun 77528, Quintana Roo, Mexico

h i g h l i g h t s

• We propose a distributed algorithm for the maximal 2-packing set in a geometric outerplanar graph.
• The execution time of this algorithm is O(n) steps.
• The algorithm has three phases: leader election, graph exploration, and vertex coloring.
• The vertex coloring phase resembles an ear decomposition of the input graph.
• When the input graph is a ring, the algorithm computes the maximum 2-packing set.

a r t i c l e i n f o

Article history:
Received 8 March 2013
Received in revised form
30 November 2013
Accepted 5 December 2013
Available online 19 December 2013

Keywords:
Distributed algorithm
Geometric graph
Outerplanar graph
Ear decomposition
2-packing set

a b s t r a c t

In this paper, we present a deterministic distributed algorithm that computes the maximal 2-packing
set in a geometric outerplanar graph. In a geometric outerplanar graph, all the vertices have location
coordinates in the plane and lie on the boundary of the graph. Our algorithm consists of three phases.
First, it elects a vertex as the leader. Second, it explores the graph to determine relevant information about
the structure of the input graph. Third, with this information, it computes amaximal 2-packing set. When
the input graph is a ring, the algorithm computes a maximum 2-packing set. The execution time of this
algorithm is O(n) steps and it uses O(n log n) messages. This algorithm does not require knowledge of the
size of the input graph. To the best of our knowledge, this is the first deterministic distributed algorithm
that solves such a problem for a geometric outerplanar graph in a linear number of steps.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A distributed system is a collection of independent processors
that communicate with each other using a computer network.
Such processors cooperate to reach a common global goal. Graphs
can naturally model distributed systems and researchers have
studied and solvedmany graph problems related to these systems.
This paper deals with the design of a deterministic distributed
algorithm that solves the maximal 2-packing set problem (M2PS)
in geometric outerplanar graphs.

A very well-known concept in graph theory is the independent
set. Let G = (V , E) be an undirected connected graph, where V and
E are the set of vertices and edges, respectively. A subset I ⊆ V is

∗ Corresponding author at: Department of Basic Sciences, Universidad del Caribe,
Cancun 77528, Quintana Roo, Mexico.

E-mail addresses: jtrejo@ucaribe.edu.mx, jtrejo@cicese.mx (J.A. Trejo-Sánchez),
fernan@cicese.mx (J.A. Fernández-Zepeda).

an independent set of G, if any arbitrary pair of vertices u, v ∈ I
are not neighbors in G. A 2-packing set is an independent set with
further restrictions; in particular, a 2-packing set [14,10] is a subset
S ⊆ V , such that the length of the shortest path between any pair
of vertices u, v ∈ S is at least three (some authors refer S as the
strong stable set [16,7]). More generally, a k-packing set is a subset
L ⊆ V such that the length of the shortest path between any pair
of vertices in L is at least k + 1 (in this sense, the independent set
is also known as the 1-packing set). Most of the research in this
area focuses on themaximal independent set (MIS). Some relevant
distributed algorithms for finding a MIS are [25,5,21,6,27,19].

The fastest distributed algorithms to solve the MIS problem are
the ones presented by Panconesi and Srinivasan [25] (for general
graphs) that run inO(2O(

√
log n)) rounds; by Barenboim and Elkin [5]

and Kuhn [21] (for low degree graphs) that run in O(∆ + log∗ n)
rounds, where ∆ is the maximum degree in G; and Barenboim
and by Elkin [6] (for bounded arboricity graphs) that run in
O(log n/ log log n) rounds. All these algorithms have sublinear
running time and most of them use the network decomposition

0743-7315/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpdc.2013.12.002

http://dx.doi.org/10.1016/j.jpdc.2013.12.002
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2013.12.002&domain=pdf
mailto:jtrejo@ucaribe.edu.mx
mailto:jtrejo@cicese.mx
mailto:fernan@cicese.mx
http://dx.doi.org/10.1016/j.jpdc.2013.12.002

2194 J.A. Trejo-Sánchez, J.A. Fernández-Zepeda / J. Parallel Distrib. Comput. 74 (2014) 2193–2202

technique [4]. (This technique generates a partition of the vertices
of the input graph and generates a set of clusters of specific
characteristics. Certain graph problems can be partially solved,
independently and in parallel, in each cluster. Then, by combining
the partial solutions of the clusters, it is possible to generate a
solution for the original problem. This is the approach used by
many sublinear running time algorithms for the MIS.) All these
algorithms require that vertices know the number n of vertices in
the input graph or at least an upper bound on this parameter. This
is a strong assumption for certain types of networks (e.g. dynamic
networks), since computing the number of vertices in a network
requires Ω(n) time units [3]. In our paper, we do not assume that
vertices know any of these parameters.

Finding a 2-packing set in a graph is useful in applications that
require mutual exclusion in the vertices at a distance two. One
example is the frequency assignment problem [13], in which the
assignment should avoid co-channel interference. Finding a M2PS
is also useful as a subroutine in algorithms that solvemore complex
problems and that require ensuring mutual exclusion among
vertices with overlapping neighborhoods [11,15]. A 2-packing set
S is maximum when S is the largest cardinality 2-packing set in G.
Finding a maximum 2-packing set is an NP-hard problem [16]. A
simpler problem is finding the M2PS. A 2-packing set S is maximal
if there does not exist a 2-packing set S ′ such that S ⊂ S ′.

There are many similarities between the MIS (maximal 1-
packing set) and the M2PS problems. Although there exist some
distributed algorithms that run in sublinear time for the first
problem for general graphs, there does not exist, as far aswe know,
any sublinear algorithm for the second problem for general graphs.
One issue that hinders this implementation is that for the M2PS
problem, vertices need to have information of other vertices at a
distance 2. Gathering this information can be expensive for graphs
that do not have constant degree. For this reason, at least from
the theoretical point of view, computing a M2PS seems to be more
difficult that computing a MIS.

One easy way to compute a M2PS for a graph G by using the
MIS algorithm of [6] is the following. First, compute the graph G2;
second, execute the MIS algorithm of [6] on G2. The resulting MIS
is a M2PS of G. Notice that this algorithm runs in sublinear time
only ifG has constant degree. For high degree graphs (or even some
outerplanar graphs), G2 can be a dense graph and computing all its
edges requires Ω(n2) work. For this reason, the execution time of
this procedure is no longer sublinear when using n processors.

When the value of n is unknown, many of the current MIS
algorithms cannot directly be used to compute a M2PS. However,
there exist some methods that make it possible to execute
these algorithms without the requirement of knowing n. Korman
et al. [19] provided a method that eliminates, in distributed
algorithms, the requirement of knowing n (with no overhead in
time complexity). The main disadvantage of this method is that
it assumes that the size of any message is unbounded (which
is a very unrealistic assumption). The algorithms of [25,5,6] can
use this method to eliminate the requirement of knowing n or a
polynomial estimate of n. However, this implies an overhead of
Ω(∆2) to transform the size of messages to O(log n) bits (since
the method of [19] requires that some vertices read information
of other vertices at a distance 2). Remember that ∆ can be as big
as O(n) for outerplanar graphs. Schneider and Wattenhofer [27]
designed an optimal distributed algorithm for computing a MIS in
O(log∗ n) rounds for bounded independence graphs, without the
requirement that vertices know the value of n. For general graphs,
this algorithm can be as slow asO(n) rounds. Note that outerplanar
graphs are not necessarily bounded independence graphs.

Even if the value of n is known, a procedure similar to the one
proposed by [6] to compute aM2PSwould fail during the process of
combining the partial solutions of the clusters (since some vertices

with high degree would need to read information at a distance 2 in
other clusters).

There exist relevant results to compute a M2PS in the self-
stabilizing context (self-stabilization is a property of some dis-
tributed systems in which the system guarantees to converge to
a legal state in a finite number of steps, regardless of the initial
state and will remain in a legal state in the absence of faults [9]).
Gairing et al. [10] presented a self-stabilizing algorithm for find-
ing the M2PS in an arbitrary graph; this algorithm converges to a
legitimate state in an exponential number of steps. More recently,
Shi [28] presented a self-stabilizing algorithm to compute a M2PS
in an arbitrary graph inO(n2) rounds. Turau [32] presented a gener-
alization of the distance-2model in self-stabilizing systems, which
makes it possible to find a M2PS in Ω(n2) rounds. Recently, Trejo-
Sánchez and Fernández-Zepeda [30] presented a self-stabilizing al-
gorithm that computes a M2PS in a cactus graph in O(D) rounds,
where D is the diameter of the cactus.

Very few algorithms focus on finding the maximum 2-packing
set. Mjelde [23] designed a self-stabilizing dynamic programming
algorithm to compute amaximum 2-packing set in a tree that con-
verges in O(n3) steps. The algorithm in [30] computes the maxi-
mum 2-packing set when the input cactus is a ring.

There exist other works that focus on finding the maximal k-
packing set. Manne and Mjelde [22] proposed a self-stabilizing
algorithm that finds a maximal k-packing for an arbitrary graph
in an exponential number of steps. Goddard et al. [12] defined a
framework to access vertex information at a distance k which, if
applied to an outerplanar graph, might find aM2PS inΩ(n3) steps.
Note that all these results are for the self-stabilizing paradigm.

A graph G is a plane graph if we can draw it in such a way that
two edges only meet in the vertices. Given a plane graph G, their
faces are the regions bounded by the edges of G. Let G be a plane
graph,G is also outerplanar if all of its vertices lie on the boundary of
the graph.We refer to the region outside the graph as the outerface.
Outerplanar graphs have attracted a lot of attention, since some
computational problems that are NP-hard for arbitrary graphs can
be solved in polynomial time in outerplanar graphs [17,33]. Note
that trees, rings and cacti are subclasses of the outerplanar graphs.

The algorithm that we propose in this paper receives as input
an outerplanar geometric graph. Geometric graphs assume that
their vertices know their coordinates in the plane. Edges are
straight lines connecting any pair of vertices that can communicate
with each other. Kranakis et al. [20] use geometric graphs to
discover routes in an undirected graph. Chávez et al. [8] presented
an algorithm for discovering routes for directed geometric
outerplanar graphs. Someof the ideas behind the exploration of the
geometric outerplanar graph in our algorithm are also present in
these papers. We use the location information of geometric graphs
to simplify the exploration of the input graph.

The results obtained by using geometric graphs have proved to
be helpful for the solution of various combinatorial and computa-
tion geometry problems [24]. Knowing the location of each vertex
in the plane is a realistic assumption because this information is
now easily available by the use of Geographic Positioning Systems
(GPS).

Although our algorithm solves a problem that is defined for an
undirected graph, we model the distributed system where it runs
as a directed graph D = (V , A), where V and A are the set of ver-
tices and directed edges, respectively, and |V | = n. Each vertex of
the graph represents a processor and each directed edge a commu-
nication link between processors.We assume that processors com-
municate with each other by using the message passing model [2]
inwhich each processor communicateswith its neighbors by send-
ing messages over communication channels. We assume that each
vertex uhas a unique identifier ofO(log n) bits and it knows its own
location and the locations of all its neighbors. The message length

Download English Version:

https://daneshyari.com/en/article/431751

Download Persian Version:

https://daneshyari.com/article/431751

Daneshyari.com

https://daneshyari.com/en/article/431751
https://daneshyari.com/article/431751
https://daneshyari.com

