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a b s t r a c t

This paper compares two different methods for combining PCA and ANOVA for sensory profiling data.
One of the methods is based on first using PCA on raw data and then relating dominating principal com-
ponents to the design variables. The other method is based on first estimating ANOVA effects and then
using PCA to analyse the different effect matrices. The properties of the methods are discussed and they
are compared on a data set based on sensory analysis of a candy product. Some new plots are also pro-
posed for improved interpretation of results.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Sensory panel data can always be looked upon as three-way
data tables with assessors, objects/samples and attributes as the
three ‘‘ways”. In order to analyse differences and similarities be-
tween samples and assessors as well as the correlation structure
among attributes, the three-way structure of the data needs to
be taken into account. This can be done in various ways using dif-
ferent underlying ideas and philosophies.

A technique that can be useful in some cases is regular multi-
variate analysis of variance (MANOVA, Kent & Bibby, 1978) for
testing the effect of samples and/or assessors for all attributes
simultaneously. Usually one is, however, interested in more insight
than this method can give and therefore other techniques are to be
preferred. A much used method within the area of sensory analysis
is the generalised procrustes analysis (GPA), treating each assessor
slice as a matrix, followed by a principal component analysis of the
average or consensus matrix (Dijksterhuis, 1996). GPA is based on
the idea of making individual assessor data matrices as similar as
possible to each other by scaling and rotation. Another possible ap-
proach is regular principal components analysis (PCA) of all indi-
vidual sensory profiles followed by a two-way ANOVA of the
most important components with assessor and products effects
as independent variables. (Ellekj�r, Ilseng, & N�s, 2002). The rows
in the data table used for this analysis correspond to all sam-
ples * assessor combinations and the columns correspond to sen-

sory attributes. This method can be modified using the 50–50
MANOVA (Langsrud, 2002) method which handles significance
testing in a more elegant way. Using partial least squares regres-
sion (PLS-2) of all sensory profiles versus the two independent de-
sign variables assessors and products and their interaction is a
closely related approach (Martens & Martens, 2001). PCA based
on the alternative unfolding with objects and assessor * attributes
as columns and rows has been tested in for instance Dahl and
N�s (2006). In the same paper a generalised canonical correlation
analysis CCA (Carroll, 1968) analysis of individual sensory data was
tested and compared to PCA. Classical three-way factor analyses
such as Tucker-2 and PARAFAC have also found useful applications
within the framework of sensory analysis (Bro, Qannari, Kiers, N�s,
& Frøst, 2008; Brockhoff, Hirst, & N�s, 1996). Recently an alterna-
tive method for three-way analysis of variance (ANOVA) has been
proposed in the chemometric literature (ASCA, Jansen et al., 2005),
but the method is not yet tested for sensory data. ASCA is a method
which first uses regular two-way ANOVA for each attribute sepa-
rately, estimates the effects (under regular ANOVA restrictions)
and then uses PCA on the main effects matrices and interaction
matrix separately for interpretation of results. The method has re-
cently been combined with PARAFAC in the so-called PARAFASCA
(Jansen et al., 2008). Other important approaches and overviews
of alternative methods can be found in Qannari, Wakeling, Cour-
coux, and MacFie (2000, 2001) and in Hanafi and Kiers (2006).

The present paper is a comparison study of two of the ANOVA
based methods described above. In particular we will be interested
in comparing the newly developed ASCA method with traditional
PCA of the unfolded three-way data table followed by ANOVA (here

0950-3293/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.foodqual.2008.08.003

* Corresponding author. Tel.: +47 64 97 0333; fax: +47 64 97 0165.
E-mail address: tormod.naes@matforsk.no (T. N�s).

Food Quality and Preference 20 (2009) 167–175

Contents lists available at ScienceDirect

Food Quality and Preference

journal homepage: www.elsevier .com/locate / foodqual

mailto:tormod.naes@matforsk.no
http://www.sciencedirect.com/science/journal/09503293
http://www.elsevier.com/locate/foodqual


called PC-ANOVA). As can be noted, the two methods are closely
related in the sense that they are both based on the same two basic
methodologies, two-way ANOVA and PCA, but with the difference
that the two methodologies are used in opposite order. These ap-
proaches have the advantage over other methods that they focus
both on the multivariate aspects of the sensory profiles and the ex-
plicit relation of the sensory data to the design of the study. The
methods will be compared conceptually and also with respect to
results obtained in an empirical illustration.

2. Theory

In the present paper we will consider a three-way data table
with I * M rows corresponding to M replicates of I samples, K col-
umns corresponding to the attributes and with J slices correspond-
ing to assessors. We refer to Fig. 1 for an illustration of the
structure of the data set.

Three way data of this type can always, for each attribute k, be
modelled by the two-way ANOVA model

Xk
ijm ¼ lk þ ak

i þ bk
j þ abk

ij þ ek
ijm ð1Þ

Here the l is the general mean, the a’s are main effects for products,
the b’s main effects for assessors, the ab’s the interactions and e is
the random error term corresponding to replicate variation. For
ANOVA purposes, the error terms are assumed to be uncorrelated
and normally distributed with the same variance. The usual way
of applying this model is to assume that the assessor and interac-
tion effects are random, leading to a mixed model (see N�s &
Langsrud, 1998).

Sometimes experimental designs are used for the samples and
in such studies (Baardseth et al., 1992), the product effect can be
split in several components corresponding to the experimental fac-
tors in the design (Box, Hunder, & Hunter, 1978). How to handle
this extension within the framework of the methodologies pre-
sented here will be discussed below. How to handle structures in
the replicates will also be discussed in the same sections.

In the following we will use the symbol X to denote the un-
folded three-way data table with I * M * J rows and K columns.
Using this symbol it is possible to rewrite the model in Eq. (1)
for all the attributes simultaneously as follows

X ¼ 1lt þ D1B1 þ D2B2 þ D12B12 þ E ð2Þ

where l is the general mean vector for all K attributes simulta-
neously, 1 is a vector of 1’s, the D1, D2 and D12 are the dummy de-
sign matrices for the products, assessors and interactions between
assessors and products respectively and the B’s are the correspond-
ing parameter matrices. The B1 corresponds to the a’s in Eq. (1), the
B2 to the b’s and B3 to the ab’s. The design matrix D1 will have one
column for each assessor and consists of 0’s and 1’s with a 1 in col-
umn j and row i if this line corresponds to an observation for assessor

j. The same structure holds for the other two matrices. The matrix E is
the matrix of residuals. Correlations between the different elements
(columns) of this matrix are possible (Mardia, Kent, & Bibby, 1978),
but it is always assumed within multivariate ANOVA that the error
terms for different observations and replicates are independent.

The model (2) can be used directly, either for each attribute
(column) separately or for all simultaneously for testing hypothe-
ses about product and assessor effects. An example of an important
hypothesis related to this model is H0:B1 = 0, which is the hypoth-
esis of no product effects. For the univariate ANOVA, this hypothe-
sis can be separated in K individual hypotheses, one for each
attribute. Similar hypotheses can be set up for assessor and inter-
action effects. If wanted, one can also construct a combined
hypothesis of for instance B1 and B12 as is done in the ASCA paper
(Jansen et al., 2005) and in N�s & Langsrud, 1998.

The main problems with regular ANOVA approaches is that they
only focus on hypothesis tests and provide little further insight
about the relations between the attributes. Therefore ANOVA will
usually be accompanied with some type of PCA for further inter-
pretation of the relations between the variables. In this paper we
will discuss two alternative approaches proposed in the literature
for providing this type of additional insight by combining ANOVA
with PCA.

For the purpose of the methods to be discussed below, it is of
interest to estimate the effects matrices B in Eq. (2) above. This
is usually done by least squares (LS) fitting of the responses to
the design matrices, but in order to obtain unique results, one
needs to add a restriction on the parameter estimates (see e.g.
Lea, N�s, & Rødbotten, 1997). This can be done in various ways,
but the most common way is to use the restriction that all main ef-
fects of assessors and main effects of products sum to 0 and that
the same is true for the interactions summed either over assessors
or products. In this paper main attention will be given to balanced
designs, but how to extend the approach to more general data sets
will also be discussed. For the balanced case, the main effects and
interactions have a particularly simple expression based on simple
averages and subtraction, i.e.

âk
i ¼ �Xk

i � �Xk ð3Þ

b̂k
j ¼ �Xk

j � �Xk ð4Þ

ab̂k
ij ¼ Xk

ij � �Xk
i � �Xk

j þ �Xk ð5Þ

where �Xk
i is the average for product i and attribute k, �Xk

j is the aver-
age for assessor j and attribute k. and �Xk is the total average for
attribute k. Note that the interactions can be considered as obtained
by double centring of the original data matrix.

When PCA is used in this paper we will always use it on centred
data, i.e. data for which the average has been subtracted for each
column.

2.1. PCA-ANOVA

The simplest way of combining ANOVA with PCA is to use PCA
directly on the unfolded data matrix X in Eq. (2) where the number
of columns corresponds to the number of attributes and the num-
ber of rows corresponds to all assessor, product and replicate com-
binations. This implies that the PCA gives components that are
combinations of all the effects in the model (2). A possibility is to
average over replicates before computation of principal compo-
nents, but generally this is not natural since the replicates are
needed for testing purposes in the subsequent ANOVA. Examples
of the use of this and similar methodologies can be found in
Ellekj�r et al. (2002) and in Langsrud (2002).
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Fig. 1. The data structure for descriptive sensory data.
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