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The scheme of Hereditary Harrop formulas with constraints, HH(C), has been proposed as
a basis for constraint logic programming languages. In the same way that Datalog emerges
from logic programming as a deductive database language, such formulas can support
a very expressive framework for constraint deductive databases, allowing hypothetical
queries and universal quantifications. As negation is needed in the database field, HH(C)

is extended with negation to get HH¬(C). This work presents the theoretical foundations
of HH¬(C) and an implementation that shows the viability and expressive power of
the proposal. Moreover, the language is designed in a flexible way in order to support
different constraint domains. The implementation includes several domain instances, and
it also supports aggregates as usual in database languages. The formal semantics of the
language is defined by a proof-theoretic calculus, and for the operational mechanism we
use a stratified fixpoint semantics, which is proved to be sound and complete w.r.t. the
former. Hypothetical queries and aggregates require a more involved stratification than
the common one used in Datalog. The resulting fixpoint semantics constitutes a suitable
foundation for the system implementation.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The extension of LP (Logic Programming) with constraints gave rise to the CLP (Constraint Logic Programming) scheme
[26,25]. In a similar way, the HH(C) scheme (Hereditary Harrop formulas with Constraints) [31,19] extends HH by adding
constraints. In both cases, a parametric domain of constraints is assumed for which it is possible to consider different
instances (such as arithmetical constraints over real numbers or finite domain constraints). The extension is completely
integrated into the language: constraints are allowed to occur in goals, bodies of clauses, and answers.

As a programming language, HH(C) can still be viewed as an extension of CLP in two main aspects. On the one hand,
the logic HH introduces new connectives which are not available in Horn Clause logic, such as disjunction, implication and
universal quantifiers [36]. On the other hand, and following Saraswat [45], in the scheme HH(C), the notion of constraint
system is established in such a way that any C satisfying certain minimal conditions can be considered as a possible
instance for the scheme. In [45], as minimal conditions the language of constraints incorporates ∧ and ∃. However, particular
constraint systems may include more logical symbols as ∀ and ⇒, together with the corresponding assumptions related to
their behavior. Therefore, the language of constraints itself extends the common ones used in CLP, consequently facilitating
the representation of more complex constraints.
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This paper extends other works [38,2] in which we investigated the use of HH(C) not as a (general purpose) programming
language, but as the basis for constraint deductive database (CDDB) systems [30,42]. The motivation is that, in the same
way that Datalog [51,56] and Datalog with constraints [27] arise for modeling database systems inspired by LP and CLP
respectively, the language HH(C) can offer a suitable starting point for the same purpose. We show that the expressive
power of HH(C) improves existing languages by enriching the mechanisms for database definition and querying, with new
elements that are useful and natural in practice. In particular, implications can be used to write hypothetical queries, and
universal quantification allows encapsulation. The existence of constraints is exploited to represent answers and to finitely
model infinite databases and answers. This is also the case of constraint databases, but the syntax of our constraints is also
more expressive than the one commonly used in them, as it is the case of Datalog with constraints.

However, HH(C), as it was originally introduced, lacks negation which, as we will see, is needed for our proposal to be
complete with respect to relational algebra (RA). We have extended HH(C) with negation, to obtain HH¬(C) to be used as
a database language. We have defined a proof-theoretic semantics to provide the meaning of goals (queries) and programs
(databases). This meaning is represented by answer constraints, which can be obtained using the goal-oriented rules of
a sequent calculus which combines intuitionistic inference rules with deductibility in a generic constraint system. Also,
a stratified fixpoint semantics has been defined and proved to be sound and complete with respect to the previous one. The
motivation for introducing this new semantics take into account several aspects:

• The fixpoint semantics provides a model for the whole database, while the proof-theoretic one (as well as top-down
semantics in general) focuses only on the meaning of a query in the context of a database. In fact, the fixpoint of a
database will correspond to the instance of the database. Thereby, the fixpoint semantics supplies a framework in which
properties such as equivalence of databases can be easily analyzed, which gives formal support to the study of query
optimization.

• In order to deal with recursion and negation, we have followed the stratified negation approach used in [51] which
gives semantics to Datalog. The use of a fixpoint semantics as an operational mechanism has been adopted as a good
choice in several deductive database systems as it is able to avoid the non-monotonicity inherent to negation. Then
it guarantees termination, as long as the constraint answer sets are finite. Further, it facilitates to work with different
constraint systems, relegating the problem of termination to the problem of finding intensional representations of data
by the constraint system. This issue is dealt in works as [40], where safety conditions are imposed to the constraint
system, and some particular systems are identified as satisfying such conditions. Hence, termination for any query is
ensured for these systems. But, identifying such particular systems is out of the scope of this work.

• Introducing negation in goals makes a given database to may have several meanings [51]. Stratified negation is one
of the approaches that, by imposing syntactical restrictions, guarantees a unique model for the database: the minimal
fixpoint interpretation. Moreover, stratification has been previously used as a useful resource when dealing with hypo-
thetical queries in Datalog [9], in order to get a unique minimal model for the database, as it is the case of our proposal.

• Stratification is a common technique to deal with aggregates [42], because it ensures monotonicity. Our stratified design
of the fixpoint semantics has become a good framework to implement aggregates.

In order to define a stratified fixpoint semantics for HH¬(C), we have adapted the usual notion of dependency graphs
to include the dependencies derived from implications inside goals, as well as those derived from aggregate functions. The
fixpoint of a database is computed as a set of pairs (A, C), where A is an atom and C a constraint. The atom A can be
understood as an n-ary relation instance, where its arguments are constrained by C . According to the dependency graph,
predicates are classified by strata and these pairs are computed by strata. Each stratum should become saturated before
trying to saturate any other higher stratum. However, as an implication may occur in a goal, the computation must take
into account that the database is augmented with the hypothesis posed in the implication antecedent. From the theoretical
point of view, this issue does not make any obstacle, but it can be a drawback for a concrete implementation. In our
approach, the fixpoint of the augmented database must be locally computed to solve the implication. But our proposal takes
advantage of the stratification to avoid cycles during the computation. In addition, the dependency graph can be useful to
reduce this computation to the part of the database that is involved in the implication.

The fixpoint semantics provides support for a concrete database system. We have implemented a Prolog prototype very
close to the underlying theory as a proof-of-concept. Essentially, it incorporates all the features introduced in the paper,
and moreover it supports aggregate functions. Two main components can be distinguished in the implementation of this
database language. One corresponds to the implementation of the fixpoint semantics which is independent of the concrete
constraint system. The other component corresponds to the implementation of the constraint system. We have considered
and implemented solvers for the following constraint systems: Boolean, Reals, and Finite Domains, as instances of C in the
scheme HH¬(C). The implementation is designed in such a way that more than one constraint system can be used within
the same database. We have designed a type system for identifying the constraint system each constraint in a database
belongs to.

1.1. Related work

It is well known that negation in logic programming is a difficult issue and there has been a great amount of work about
it [1], and also in constraint logic programming [46] and deductive databases [8] since long time ago. A first bag of issues
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