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Tail recursive functions are a special kind of recursive functions where the last action in
their body is the recursive call. Tail recursion is important for a number of reasons (e.g.,
they are usually more efficient). In this article, we introduce an automatic transformation
of first-order functions into tail recursive form. Functions are defined using a (first-order)
term rewrite system. We prove the correctness of the transformation for constructor-based
reduction over constructor systems (i.e., typical first-order functional programs).

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Tail recursive functions are recursive functions that call themselves (or other mutually recursive functions) as a final
action in their recursive definitions. Tail recursion is specially important because it often makes functions more efficient.
From a compiler perspective, tail recursive functions are considered as iterative constructs since the allocated memory in the
stack does not grow with the recursive calls (moreover, some functions may become much more efficient in tail recursive
form thanks to the use of accumulators). Furthermore, a transformation to tail recursive form may also be useful to define
program analyses and transformations that deal with programs in a given canonical form (e.g., where all functions are
assumed to be tail recursive). This is the case, for instance, of the function inversion technique of [1] that is defined for tail
recursive functions.

Let us illustrate the proposed transformation with an example. Consider the following function to concatenate two lists:

app(nil, y) → y

app(x : xs, y) → x : app(xs, y)

where nil denotes an empty list and x : xs a list with head x and tail xs. The function app can be transformed into tail
recursive form, e.g., as follows:

app(x, y) → app′(x, y, id)

app′(nil, y,k) → eval(k, y)

app′(x : xs, y,k) → app′(xs, y, cont(k, x)
)
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eval(id, y) → y

eval
(
cont(k, x), y

) → eval(k, x : y)

Intuitively speaking, the essence of the transformation consists in introducing two new constructor symbols, a 0-ary con-
structor id (to stop the construction of contexts) and a binary constructor cont (to reconstruct contexts). Therefore, a deriva-
tion like

app(1 : nil,2 : 3 : nil) → 1 : app(nil,2 : 3 : nil) → 1 : 2 : 3 : nil

becomes

app(1 : nil,2 : 3 : nil) → app′(1 : nil,2 : 3 : nil, id)

→ app′(nil,2 : 3 : nil, cont(id,1)
) → eval

(
cont(id,1),2 : 3 : nil

)
→ eval(id,1 : 2 : 3 : nil) → 1 : 2 : 3 : nil

in the transformed program. Observe that, in contrast to the approach of [2], our tail recursive functions are not more
efficient than the original ones (actually, they perform some more steps—by a constant factor—due to the introduction of
the auxiliary function eval).1 This is similar to the introduction of continuations [3,4] in higher-order λ-calculus, i.e., lambda
expressions that encode the future course of a computation. For instance, the example above would be transformed using
continuations as follows:

app xy → appc xy(λw.w)

appc nil yk → ky

appc (x : xs)yk → appc xsy
(
λw.k(x : w)

)
As in our approach, some more steps are required in order to reduce the continuations:

app(1 : nil)(2 : 3 : nil) → appc (1 : nil)(2 : 3 : nil)(λw.w)

→ appc nil(2 : 3 : nil)
(
λw ′.(λw.w)

(
1 : w ′))

→ (
λw ′.(λw.w)

(
1 : w ′))(2 : 3 : nil)

→ (λw.w)(1 : 2 : 3 : nil) → 1 : 2 : 3 : nil

In this article, we introduce an automatic transformation of first-order functions to tail recursive form. In our setting,
functions are defined using a constructor term rewrite system, i.e., a typical (first-order) functional program. Moreover, in
order to preserve the semantics through the transformation, we only consider a particular form of innermost reductions
(i.e., call by value) that is known as constructor-based reduction.

As mentioned before, in the context of λ-calculus, a similar goal can be achieved by introducing continuations [3,4].
However, this implies moving to a higher-order setting and we aim at defining a first-order transformation. Hence we
share the aim with Wand’s seminal paper [5], though he focused on improving the complexity of functions by introducing
accumulators (a data structure representing a continuation function, in Wand’s words). However, the examples presented by
Wand required some eureka steps and, therefore, no automatic technique is introduced. A similar approach is also presented
by Field and Harrison [2], where the function accumulators are derived (manually) from functions with continuations.
Although the introduction of accumulators is out of the scope of this paper, an example illustrating such a transformation
in our context can be found in Section 4.

The paper is organized as follows. In Section 2 we briefly review some notions and notations from term rewriting.
Section 3 presents our transformation for converting functions to tail recursive form and proves its correctness. Finally,
Section 4 concludes and points out a challenging direction for future research.

2. Preliminaries

In this section, we recall some basic notions and notations of term rewriting [6,7].
Throughout this paper, we use V as a countably infinite set of variables. Let F be a signature, i.e., a finite set of function

symbols with a fixed arity denoted by ar( f ) for a function symbol f . We often write f /n to denote a function symbol f
with arity ar( f ) = n. The set of terms over F and V is denoted by T (F ,V), and the set of variables appearing in terms
t1, . . . , tn is denoted by Var(t1, . . . , tn). The notation C[t1, . . . , tn]p1,...,pn represents the term obtained by replacing each hole� at position pi of an n-hole context C[ ] with term ti for all 1 � i � n. We may omit the subscripts p1, . . . , pn when they

1 Nevertheless, it may run faster in general thanks to the use of tail recursion.
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